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Abstract—We present performance results using selected PC routers, or possibly as a combination of open modules with
hardware and open source software for IP packet forwarding h  efficient forwarding components [7].

10Gbps speeds. In our experiments, we use a multi-core NUMA However, many previous efforts have been hindered by

PC architecture with multiple DMA channels, dual PCle buses f . ts. While it h b ible 1
and state-of-the art 10GE network interface cards. In this @per periormance requirements. lie 1t has been possibie 1o

we focus on packet transmission and study throughput and mai- ~ deploy open source routers as packet filterers on medium-

core performance. bandwidth networks it has been difficult to connect them to
Our primary results are that 10Gbps tranmission rate is high-bandwidth uplinks.

Or’ta'”ﬁb'e r:” wureTtpeled for down trt10 250_byte_dpackets. Wel Somewhat simplified, performance limitations are depen-

as0 SNoW oW MUIIPIE quUEUEs on e receive side Were SVenlyjent on per-packet (transaction) and per-byte (bandwidth)

distributed over multiple CPU cores. We also identify a remaning . .
bottleneck in the linux kernel before the full potential for muli- ~ €OSts. On a PC architecture, per-packet costs have mainly

queue and mult-core forwarding can be utilized. to do with processing in software by CPUs and is therefore
dependent on instruction count, I/O and memory latencyheac
. INTRODUCTION behaviour and clock frequency.

Per-byte costs are typically coupled to bandwidth limi@as

The first IP routers were software-based and used offt hyses and memory. In particular, a PC router has to pay
the shelf computer architectures. As the requirement fge double bandwidth price of forwarding a packet from one
throughput increased, applications specific circuits we#e network interface to main memory (via DMA) and then back
veloped (ASICs) along with high performance switchingp an outgoing network interface after being inspected by a
backplanes(e.g. cross-bars) and advanced memory systerps).
(including TCAMs). This enables current routers to perform |n particular, the 1Gbps PCI bus used to be a limiting factor
wire-speed routing up to Terabit speeds. The commerciakhigjuring several years but with the advent of PCI Express, the
end routers of today have little in common with a standafgerformance has been increased by the use of parallell lanes
desktop. and a new generation in bus technology with respect to DMA

On commercial high-end routers, the architecture has deénd bus arbitration. One important advantage with PCle is
veloped from an integrated routing and forwarding modul@at interrupts are tranferreis in-line instead of oubafhd
(e.g. the BSD IP stack [8]) into a separated control-plarte ansing MSI, which enables a better handling since it allows
data-plane where the former directs the real-time forwaydifor multiple queueable interrupts.
in the data-plane using management and signaling softwareMemory cache behaviour is also important and is a crucial
At the same time the complexity of the forwarding and routingsue with the introduction of multi-core architecturesittw
protocols have increased resulting in more hardware, ané mehe advances of efficient forwarding algorithms [2] and $mal
complex software modules, up to a point where hardware cosfemory footprints [5], IPv4 forwarding itself is seldom a
power consumption and protocol complexity are importafiiniting factor.
limiting factors of network deployment. Other limitations have been advances in protocol develop-

Simultaneously, development of routers on general-p@pasent where open source routing have trailed behind commer-
computer platforms (such as PC’s) has developed. In péaticucial software vendors. One particular example of this is the
general purpose hardware combined with open-source [9ek of open source MPLS implementations, with associated
[11] have the advantages of offering a low-cost and flexibPN services using BGP and MPLS. On the other hand, the
solution that is tractable for several niches of networkingpen source routing community tends to build its solutiotinwi
deployment. Such a platform is inexpensive since it uses ofimpler and cleaner network architectures often relyingRen
the-shelf commodity hardware, and flexible in the sense péire networks.
its openness of the source software and a potentially largeOur claim in this paper is that several current trends com-
development community. bined actually speaks for a renewed attempt of using general

One can also see the modularization development takipgrpose hardware, and we present an approach that we think
place in standardization forums including IETF ForCES [gl] ehas a potential for success in using on a larger scale in new
a further trend that supports the development of open sodtwapplication areas. In particular, with 10GE speed and lost co
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Fig. 1. Simplified block structure of the Tyan 2915 board witto AMD  Fig. 3. Experimental setups for forwarding. Traffic was geted, forwarded
2222 CPUs and double PCle buses. and terminated using three boxes.

we believe that open source routers can be used by entespriggcket generator.

small ISPs, a}nd othe.r scenarios where cost—efficiency@?mhcl The experiments were conducted using two setups as shown

_”et""of" deS|gn_z_are |mport_ant. Bu_t maybe the most 'mport"’\ﬂtFigure 2 for transmission and Figure 3 for forwarding. The

ISSU€ 1S the ab'“ty to _part|C|pate in the development of N€¥sted device is the experimental platform as describdikear

services, which can increase the knowledge and may gliy§y the test generator and sink device are similar systems. |

compet.|t|ve advantaggs. ) . all cases, pktgen was used to generate traffic, and interface
In this paper we discuss how to exploit the parallellismg nters were used to verify their reception. Received giack

of multi-core CPU architectL_Jres Wi'Fh NUMA architectgre an@vere only registered by the receiving port and not actually
parallell PCle buses combined with 10G Ethernet interfagg,sferred over the bus to main memory.

cards with multiple interrupt and DMA channels. We have
chosen an advanced PC platform with large potential for _
parallellism that we believe will be commonplace very sooft- Hardware selection process

in desktop PCs. Before selecting this particular hardware setup, we exam-

1. EXPERIMENTAL PLATFORM AND SETUP ined several other interface cards. Preliminary experimen
eorformed on those cards were somewhat disappointing in
n .

efms of packet-per-second and bandwidth performance. The

. T lected card matched our requirements and we believe that
The interface cards we selected were 10 Gigabit XF % ere are currently new competing cards that also match this

Dual Port Server Adapter PCI Express x8 lanes based Bgrformance. In any case, it is essential to pick the correct

82598 chipset from Intel with multiple interrupt and DMA :
channels. The cards have multiple RX and TX queues. In Or&z?rdware components in order to get full 10GE performance.

experiments we use both two dual and single NICs.
The computer platform was an AMD Barcelona 2222 with [1l. DESCRIPTION OF EXPERIMENTS
two double-core 3GHz CPUs combined with a Tyan Thunder
n6650W(S2915) mother board with double PCle buses, seelhe experiments were divided into two main areas: Trans-
Figure 1. The four CPUs are arranged in two double-cordgission (TX) and forwarding.
each having access to local memory, thus forming a simpleThe purpose of the TX experiments was to explore hard-
NUMA architecture. Internal buses are HyperTransport (HTyare capabilities, including DMA, bus bandwidth and driver
In the base configuration, we placed two dual 10GE car@ierformance. This served as a hardware baseline in prégarat
on each of the PCle buses. This means that we can use fisurthe forwarding experiments. By knowing TX performance,
CPUs, two main memories, two PCle buses and four 10G@per limits for IP forwarding are known in principle.
interfaces. The forwarding tests are more complex and involves many
The software was Bifrost [9] version 5.9.1 which is a LinuxXactors that are difficult to study in isolation. First, aglmflow
release aimed at providing an open source routing and packes forwarded and the outgoing interface was varied using a
filtering platform. Bifrost includes routing daemons, petk single CPU. Thereafter, a realistic multiple-flow streamswa
filtering, packet generators, etc. forwarded also using a single CPU. In the last experiment,
The Linux kernel was 2.6.24rc7 with the LC-trie forwardingnulti-queues on the interface cards were used to dispatch
engine, and traffic was generated using pktgen [1], a Linaifferent flows to four different CPUs.

For the experiments we use an advanced PC platform
run an experimental variant of the Bifrost Linux distrilmrii
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Fig. 4. TX single sender: Packets per second. Fig. 6. TX multiple senders: Packets per second for 64 bytkeia shown
for one and four CPUs. Note that the y-axis is broken betweerarid 60
Mpl/s.
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Ten sets of one million packets were sent for each packet

107 size.
Figure 4 shows millions of packets per second as a function
87 of packets size in bytes. The ideal graph for perfect 10Gbps

forwarding is also shown. The figure shows that maximum pps
for a single CPU is above 4 million.
Figure 5 shows result from the same experiment where
bandwidth in Gbps is plotted against packet size. The figure
shows clearly that wirespeed performance is maintainegof u
to 256 byte packets, and then drops.
Hardly surprising, one can see the limiting factor is per-
64 128 256 512 1024 1500  Packet cost for small packets which we believe is probably
due to I/O latency.

Bandwidth [Gbit/s]
[«

Packet length [bytes]
B. Multiple-sender TX

In this experiment, the single sender case was extended to
employ all four CPUs. Each CPU transmitted a single flow to
a separate 10GE card over two separate PCle buses. Fibers
IV. TX RESULT were loopbacked as shown in the upper part of Figure 2
, and the receive side simply counted packets without further
A. Single-sender TX processing.

In the first experiment, IP packets were sent from ethO to Figure 6 shows the result of transmitting 64-byte packets.
eth2 (see Figure 2). Only a single CPU was used. Packets wEhe x-axis represents the different senders while the g-axi
not actively received, eth2 was used just to provide link. are packets per second. In the figure, the left columns show

In accompanying experiments, not shown here, we notdte experimental values while the right columns show the
that sending from different CPUs to different cards on défé theoretical limit. Note that the y-axis is broken to fit the
PCle buses had little impact on the results, therefore wheoretical packets per second which reaches approxiynatel
conclude that the HT buses are not a limiting factor i60Mp/s for 4x10Gbps.
these experiments, and we abstract away which CPU actuallNote also that the left column in the case of four CPUs has
transmitted on each interface. been partitioned showing how much each CPU contributes.

It is also important in this and all following experiments Two things can be noted from this experiment: The total
to assign TX interrupts so that the same CPU that sent tthansmission rate is around 10Mpps and the distribution be-
packet makes the buffer cleanup after TX. If not, the CPtiveen the CPUs is even. However, the packet rate is lower for
gets a cache misses when freeing buffers. a single sender (2.5 vs 4.7 Mpps).

Fig. 5. TX single sender: Bandwidth
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Fig. 7. TX multiple senders: Bandwidth for 1500 byte pack&tewn for
one and four CPUs. 396100 14.8714 kfree

390230 14. 6510 dev_kfree_skb_ irq

300715 11.2902 skb_rel ease_data
Figure 7, shows the resulting bandwidth when each 056310 5.8686 eth_type trans
the four streams transmitted 1500 byte packets. The y-axi§2188 5.3384 ip_rcv
represents Gbps, and the left columns show experiment@lsg48s 4.0116 __alloc_skb
results. 75677 2.8413 raise_softirqg_irqgoff
In the bandwidth plot, it can be seen that the total bandwid§®924 2.6253 nf_hook_sl ow
produced is 25.8 Gbhps, and there is also a fair distributi@p547 2.6111 knem cache free
between the CPUs and interfaces. The limitation is probaldg244 2.5622 netif_receive_skb
in the PCle buses, since two CPUs try to send 20Gbps in tosg197 2.2225 _ netdev_all oc_skb
over a single PCle bus, see Figure 1. 59179 2.2218 cache_flusharray
53777 2.0190 ip_route_input
V. FORWARDING RESULT 49528 1.8595 ip_rcv_finish
A. Single CPU, single flow 48392 1.8169 __qdisc_run
In the following experiments, the setup in Figure 3 Wa§9125 1.4689 ip_forward ,
used. A single packet flow was was sent from B to C, witf8634 1.3754 dev_queue_xmi t .
router A receiving packets on one interface and forwardirﬁ888 1.2723 f:ach_e_fal loc_refill
them on another. 465 1.2564 ip_finish_output

Packets were forwarded by a single CPU, with a single
DMA from RX and a single DMA to TX was performed.
Since all packets belonged to a single flow, all lookups were
made in the destination cache.

Figure 9 is packets per second at around 900kpps. This results in

The experiment first used three different output interfacesear wire-speed for larger packets but degrading bandwidth

. Same card. The input and output interfaces were on tRgrformance at lower packet sizes.

same card but different port on the dual adaptor. This Figure 11 shows a similar experiment where the netfilter

means that both RX and TX was made over the sam®&dule has been loaded, but without any packet filters. One

PCle bus. can see a minor performance degradation due to the increased
- Different cards. RX and TX on different PCle buses. per-packet cycle cost.

+ Dummy interface. RX and all software processing was pyofiling was done for each experiment in order to get

Fig. 9. Forwarding profiling: single-CPU

performed, but not the final TX. a detailed understanding of the CPU and code execution.
Figure 8 shows the packet-per-second graph. In the gragtigure 9 shows the profiling in the different cards case. The
comparing these three different strategies. figure shows that the CPU spends a large part of its time in

As can be seen from the figure, there is little variatiohuffer handling. Input handling seems also, as expected, to
between the experiments, and the primary limiting factgtield more work than forwarding and output.
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Fig. 12. Multi-queue forwarding

the 31K new flows per second corresponds to a destination
cache miss rate of around 5%.

The FIB was extended to 214K routes and the netffilter
modules were loaded - again without actually filtering any
packets.

The result of these experiments are shown in Figure 11.
It can be seen from the figure that enabling IP filtering and
extending the FIB reduces the performance somewhat. The
reasons of this is most probably the increased number of
instructions per packet that needds to be made by the CPU.

C. Multiple queues, multiple CPUs

Only 64 bytes pakets

In the previous experiment, only one CPU was used to
forward packets from exactly one interface to another. One
way to extend this is to add more CPUs to handle the
forwarding path and thus increase the performance. It shoul
be noted however that forwarding packets in this simplex way
is not a realistic scenario. More realistic would be to famiva
between several interfaces and increasing the perforntance
letting different CPUs handle different incoming integacfor
example.

In this experiment the novel multi-queue functionality of
the Intel NICs was tested. This means that for a single input
interface, four DMA channels were allocated, one for each

In the next set of experiments, pktgen was modified GPU, corresponding to four different queues (ring-buifers
produce a mix of flows with varying destination address aritie interface card. Dispatching between packets use arfzashi
packet sizes. 8K simultaneous flows were generated, whalgorithms so that flows are evenly distributed between CPUs
each flow consisted of 30 packets. Figure 10 shows the packeat least for multi-flow traffic.

size distribution which has a relatively high percentag&#4f

In our case, the four different CPUs forward packets in

byte packets. The scheduling of the flows were made usipgrallell and the transmit the packets to the same output

four concurrent CPUs each using round-robin internally.

interface.

This resulted in a packet stream of around 31000 new flowsFigure 12 shows the behaviour of multi-queue forwarding.
per second aimed at representing a realistic packet flow iffhe case with four parallell CPUs actually leads to lower

relatively normal network environment.

performance than the single CPU case.

The linux forwarding cache performs well as long as a The profiling of the forwarding code in Figure 13 shows that
limited set of new flows arrive per second. In this experimeatlarge part of the CPU time is spent in the "dgueue xmit”



samples % synbol nane
1087576 22.0815 dev_queue_xmit
651777 13.2333 __qgdisc_run

including NICs from SUN microsystems, implement TCAMs
which enables a finer granularity classifications to be made.
Other fields where hardware classification is useful include

234205 4.7552 eth_type_trans . . L
- = . uality-of-service, fast filtering, packet capture andrestate-
204177  4.1455 dev_kfree skb_irg quality-ot-se 9.p P
ful networking and flow lookup.
174442 3.5418 kfree .
) . We even call for more advanced requirements than what
158693 3.2220 netif_receive_skb . . e
. the RSS defines to more challenging and valuable classifier
149875 3.0430 pfifo_fast_enqueue . . . L
; S functions. This to improve the forwarding in open source
116842 2.3723 ip_finish_output i -
routing further and to challenge hardware vendors. Minimal
114529 2.3253 __netdev_alloc_skb function should be required and standardized to start and
110495  2.2434 cache alloc refill N

support software development. In this way we believe that
open source routers can truly challenge the high-end router

Fig. 13. Forwardi filing: Multi-queue, multi-CPU . :
9 rwarding profiiing: Muti-queue, mu vendors with open and low-cost solutions.

. . ) VII. CONCLUSIONS
and ”__qdisc run” code, much more than in previous ex-

periments (see Figure 9). It turns out that this piece f'léhbe/re '? I|rt]tle gmtjvt\),t ?Ilai;(t)pr?n sourt;g rogtlgng haisr;)tered th n
code is a serialization point where common data-structu%j% S aréna. Netwo ertace cards, sa uses ca

are manipulated that lead to cache misses that effects 0 10Gb/s with relatively small packet sizes. Forwarding is

performance. poessib_le at 10G/s speed with large pgckets,_and around 5Gb/s
We have taken a 10GE stream and we have distributed fﬂe? m')fed flow e_nwronment. Just using a _s,mgle CPU. .
traffic evenly between the multiple CPUs. With the hardware o utilize multi-queues and !oad-.b.alanun-g of forwardlng
classifiers on the network interface cards and the MSI intét- °"Y several CP.U cores, we |qent|f|ed an issue with th(_a last
rupts and the driver code network traffic is evenly distrialt part qf the TX qdisc c.ode that. is not fully ready for belln_g
among the CPU cores. The network stack runs in parallgl?ed in such a parallellized environment. When this remgini

between the CPUs and we can note that the TX interrupts %ttlen_eck s remqved, we can fu_IIy utilize the full poteti
assigned. of multi-core, multi-queue forwarding.

However, we have identified a bottleneck in the linux foracknowledgements
warding code that need to be addressed before we can continu-?h
and further increase the forwarding capacity by adding m
CPUs. The TX and the qdisc code needs to be adapted so
its performance can scale up in the case of multiple CPUs. REFERENCES
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