

The SPID Algorithm
Statistical Protocol IDentification

Erik Hjelmvik

Gävle, Sweden. October 2008

The SPID Algorithm – Statistical Protocol IDentification

 ii

Abstract
Identifying which application layer protocol is being used within a network communication
session is important when assigning Quality of Service priorities as well as when conducting
network security monitoring. Currently most protocol identification is performed through
signature matching algorithms that rely on strings or regular expressions as signatures. This
report presents a protocol identification scheme called the Statistical Protocol Identification
(SPID) algorithm, which reliably identifies the application layer protocol by using statistical
measurements of flow data as well as application layer data. The SPID algorithm utilises
Kullback-Leibler divergence measurements to compare probability vectors created from
observed network traffic to probability vectors of known protocols.

The SPID Algorithm – Statistical Protocol IDentification

 iii

Acknowledgements
I am grateful for the valuable feedback on this report that has been provided by Wolfgang
John, a PhD student at the Computer Communications and Computer Networks group at
Chalmers University. I would also like to thank Jörgen Eriksson, of the Swedish Internet
Infrastructure Foundation, for his work to ensure that this report is made publicly available so
that it can support future Internet related research and development. I am also grateful for the
project funding, granted by the Swedish Internet Infrastructure Foundation, which provides
me with the possibility of performing the research presented in this report. Last but not least I
would like to thank my wonderful wife Sara for supporting and motivating me in the effort of
inventing the SPID algorithm and writing this report.

The SPID Algorithm – Statistical Protocol IDentification

 iv

About the Author
Erik Hjelmvik is an independent network security researcher and open source developer. He
holds a M.Sc. degree in engineering from the Royal Institute of Technology (KTH) in
Stockholm, Sweden. In the past, Erik served as an R&D engineer at one of Europe’s largest
electric utility companies, where he worked with IT security for SCADA and process control
systems.

Erik is also the creator of the network forensic analysis tool NetworkMiner, which is freely
available as open source at SourceForge.net.

About the Sponsor

The Internet Infrastructure Foundation (.SE) is responsible for the top-level Swedish Internets
domain, .se. The core business is the registration of domain names and the administration and
technical operation of the national domain name registry, at the same time as .SE promotes
the positive development of the Internet in Sweden.

.SE is an independent public utility standing on two legs: domain name operations and
development of the Internet. The surplus from the registration of domain names is used to
finance projects that contribute to the Internet’s development in Sweden. Financing projects
that contribute to the development of the Internet is a prerequisite for the operations,
according to the Foundation’s Statutes.

.SE is working hard to be an active research and development financier and player within
Internet development. The efforts are intended to benefit domain registrants. .SE has
established a long-term objective that financing projects for research and development
annually will total SEK 25 million as of 2009.

The SPID Algorithm – Statistical Protocol IDentification

 v

Table of Contents
1 Introduction .. 1

1.1 SPID Overview .. 1
2 Related Software Applications... 2

2.1 L7-filter .. 2
2.2 Fl0p... 3
2.3 PISA ... 3
2.4 Proprietary Implementations .. 4

3 Related Academic Research... 4
3.1 Traffic Classification Research .. 4
3.2 Protocol Identification Research .. 5

4 SPID Algorithm Details ... 5
4.1 Fingerprint Data Format... 5
4.2 Protocol Attribute Meters... 6
4.3 Generating Protocol Models for Observed Sessions..7
4.4 Generating Protocol Models for Known Protocols ..8
4.5 Comparing Fingerprints ... 9
4.6 Comparing Protocol Models .. 9

5 Proof-of-Concept Application.. 10
5.1 Application Functionalities .. 10
5.2 Protocol Model Database ... 11
5.3 Under the Hood .. 12

6 Evaluation... 12
6.1 Protocol Model Database Memory Complexity... 12
6.2 Operational Time and Memory Complexity ..13

7 Future Work ... 13
7.1 Algorithm Tuning... 13
7.2 Assembling Training Data ... 14
7.3 Implementation... 14

8 References .. 15

The SPID Algorithm – Statistical Protocol IDentification

 1

1 Introduction
Network intrusion detection systems (NIDS) analyse application layer data in order to detect
illicit network traffic, such as attacks and security policy violations. Different analysis engines
(protocol parsers) need to be used depending on which application layer protocol is being
used in a network communication session. Most NIDS deduce which application layer
protocol is being used in a session by using the list of well-known ports assigned by the Inter-
national Assigned Number Authority (IANA) (Dreger et al., 2006). Other solutions that often
use port numbers to deduce the application layer protocol are systems that assign Quality of
Service (QoS) priorities and traffic shaping algorithms.

Several studies have, however, reported that only 50-70% of the Internet traffic is classifiable
using the IANA port number list (Moore and Papagiannaki, 2005) (Madhukar and
Williamson, 2006). One reason for this is that some applications do, for example, try to avoid
detection from network security monitoring solutions by not using standard port numbers
(Dreger et al., 2006) (Haffner et al., 2005). Peer-to-peer (P2P) protocols belong to one such
traffic type that intentionally uses random port numbers for communication (Karagiannis et
al., 2005) in order to evade traffic filters as well as legal implications (John and Tafvelin,
2008).

Backdoors, installed by hackers on compromised systems, are often disguised by using other
ports than the well-known IANA assigned ports for Telnet, Rlogin, SSH or whatever protocol
the backdoor is using (Zhang and Paxson, 2000). There are also several other applications that
leech on well-known ports of other protocols for their communication (Li and Moore, 2007),
often with the purpose of traversing firewalls (Haffner et al., 2005). Some of the more
commonly leeched-on TCP ports are therefore ports 80 (HTTP) and 443 (HTTP over
SSL/TLS).

1.1 SPID Overview
This report presents a scheme designed to perform protocol identification based on statistical
measurements of various protocol attributes. The concept of protocol identification is also
known as application identification (Haffner et al., 2005) (Bernaille et al. 2006) (Juniper
Networks), Port Independent Protocol Identification (Bejtlich, 2006), Protocol Discovery
(Cisco, 2006) and Application Recognition (Cisco, 2007).

The herein described protocol identification algorithm, which is developed by Erik Hjelmvik,
is called the Statistical Protocol IDentification (SPID) algorithm. The SPID algorithm is
designed to reliably identify which protocol is being used in a network communication
session. Key requirements for the algorithm are:

1. Small protocol database size
2. Low time complexity
3. Early identification of the protocol in a session
4. Reliable and accurate protocol identification

The motivation for these requirements 1 and 2 are that it shall be possible to run the SPID
algorithm in real-time on an embedded network device, which has limited memory and
processing capabilities. The motivation for requirement 3 is that it shall be possible to use the
results from the SPID algorithm in a live traffic capturing environment to automatically take
measures in order to, for example, provide quality of service (QoS) to an active session, block

The SPID Algorithm – Statistical Protocol IDentification

 2

illicit traffic or store related traffic for off-line analysis1. Haffner et al. (2005) also point out
the need for enterprises to degrade P2P services (via rate-limiting, service differentiation and
blocking) on their networks in favour of the performance for business critical applications. I
have therefore required that the protocol must be identifiable, with the SPID algorithm, based
on only the four first application data packets (i.e. not counting the flow control signalling
packets) in a session. Requirement 4 does not need any further motivation than the obvious
“in order to provide a high quality service”.

The SPID algorithm performs protocol identification by using statistical fingerprints. The
statistical fingerprints, of a session or known protocol, are part of an object called “Protocol
Model”. The application layer protocol in a session is identified by comparing its protocol
model to protocol models of known protocols.

Sniffed TCP
Session Data Protocol Models

of
Known Protocols

Protocol
Model

Generation

Protocol Model
of

Unknown Protocol

Protocol
Model

Comparison

Best Protocol
Match

Figure 1 Protocol Identification Data Flow

The SPID algorithm present a reliable method for identifying protocols based on both flow
and application data. The strong identification feature is a result of the innovative protocol
attribute metering functions, the protocol models’ rich data format and the model comparison
algorithm.

The SPID algorithm does not require any manual creation of protocol signatures; but it does
require training data that is pre-classified based on protocol, in order to generate a protocol
model database. The protocol model data format allows for the protocol models to be updated
as new training data becomes available, without having access to the previously used training
data.

2 Related Software Applications

2.1 L7-filter
L7-filter (l7-filter.sourceforge.net) is an open source project which focuses on identifying the
application level (layer 7 in the OSI reference model) protocol. It does so by using manually
crafted pattern files, which contain regular expressions (RegEx) for the protocols they are
designed to identify. There are at the time of writing somewhere over 100 RegEx pattern files
available at the L7-filter project page.

L7-filter is the de-facto open source application used in order to identify the application layer
protocol without relying on IANA-assigned port numbers. The L7-filter application does,
however, have some shortcomings such as being prone to produce false positives. The L7-
filter project’s wiki page (www.protocolinfo.org) does, for example, mention the following
statement regarding the protocol pattern for the P2P protocol eDonkey:

1 Performing off-line analysis of traffic is useful in, for example, network forensic investigations

The SPID Algorithm – Statistical Protocol IDentification

 3

“This is a difficult protocol to match with regular expressions. The l7-filter pattern will falsely
identify about 1% of random data as eDonkey.”

Patterns that makes extensive use of wildcards and logic operators tend to require a great deal
of processing power, according to the L7-filter Pattern Writing HOWTO. Hence, the required
time to compare network data to a protocol pattern is not deterministic and might vary a great
deal depending on how the pattern is written.

Another problem with the L7-filter patterns is that the fingerprints have to be manually
created, which means that network traffic and/or protocol specifications need to be studied
and abstracted in order to create a reliable protocol identification pattern. The task of writing
patterns that minimise the required processing power, when performing pattern matching,
increases the manual labour furthermore.

2.2 Fl0p
Michal Zalewski has developed a proof-of-concept application, called Fl0p, which is designed
to extract interesting information from network flow data. The input data to the Fl0p appli-
cation is flow statistics, such as packet sizes and packet inter-arrival times (i.e. without
inspecting application payloads). Fl0p can be used in order to, for example, tell users apart
from automated bots even for encrypted protocols.

The fingerprint database for Fl0p does unfortunately only contain a very limited set of finger-
prints, but there are some independent initiatives to create additional fingerprints for Fl0p
(C.S. Lee, 2008). A fair amount of manual labour is required in order to generate a Fl0p
fingerprint, just as for L7-filter.

2.3 PISA
PISA is a yet-to-be-publicly-released open source application, which uses application layer
data (application data entropy) as well as flow statistics (packet sizes and packet inter-arrival
times) to identify the application layer protocol (Dhamankar and King, 2007). The PISA
application is developed by Rohit Dhamankar and Rob King of TippingPoint, and was first
presented at Black Hat USA 2007.

PISA uses a 10-dimential representation of each fingerprint, where the dimensions are made
up of average values and standard deviations of packet sizes and response times as well as the
Shannon entropy of the application layer data. One nice feature of PISA is that protocol
fingerprints can be generated automatically directly from pre-classified pcap files.

The PISA implementation uses a rather slim representation for the fingerprints, i.e. only
average values and standard deviations, instead of using a more rich representation such as a
probability density function or a probability vector. PISA also does not utilise several inherent
properties of many protocols, such as consistently having the same byte values at a fixed
offset in each packet as well as the order and direction in which the packets in a session are
exchanged between the client and server. Because of these limitations the protocol of an
observed session cannot be reliably identified by using PISA until some hundreds of packets
have been observed. Fairly good protocol detection could, according to the creators of PISA,
however be performed after just a dozen packets, given a large enough training set.

The SPID Algorithm – Statistical Protocol IDentification

 4

2.4 Proprietary Implementations
There are several commercial solutions that perform protocol identification, some examples
are NetScout’s Sniffer Application Intelligence (NetScout, 2008), Cisco’s NBAR (Cisco,
2007) and Juniper’s Application Identification. There is unfortunately very little information
available regarding how the protocol identification is performed in these proprietary systems.
A qualified guess is, however, that the implementations make use of string matching in a
similar manner as L7-filter.

3 Related Academic Research

3.1 Traffic Classification Research
Traffic classification is the science of automatically assigning a traffic class, such as P2P,
web, email, chat or gaming, to a network session. The classification algorithms do in most
cases make use of flow statistics (Erman, 2007) (Crotti et al., 2007a) (Auld et al., 2007) (De
Montigny-Leboeuf, 2005) (Bernaille et al. 2006), such as duration, bytes transferred, packet
inter-arrival time and packet size.

Using flow statistics rather than inspecting full packet data (including application data) has
several advantages:

• Network flow data can easily be extracted from most network routers
• Handling and manual inspection of network flows does not intrude on the privacy of

the network users to the same extent as when application data is handled
• Network flows require a significant lesser amount of data compared to full content

packet data

The algorithms used for traffic classification are in most cases based on linear approximation
algorithms, such as naïve Bayes and Hidden Markov Models.

A shortcoming of many traffic classification algorithms is that they cannot reliably identify
the traffic type until all, or at least several thousand packets (Erman, 2007), of the traffic from
a network session has been analysed.

Some researchers use connection patterns (Kargiannis et al., 2005) (John and Tafvelin, 2008)
in order to tie an IP-port pair to a traffic category. These methods make use of host behaviours
such as number of connected hosts, if the host is a service provider or consumer and which
other IP-port pairs the host is connected to. This is a powerful method since the classification
can be based on several flows rather than a single session or flow. One drawback of using
connection patterns is that the algorithm with time will be required to hold an unreasonably
large database of IP-port information. Connection pattern classification schemes can also not
be used if a single session is to be analysed, without having access to additional data about the
hosts’ connection pattern behaviours.

It should also be noted that the classification methods used for traffic classification are based
on a simplistic model where there are only 4 to 9 different types of traffic classes to choose
from. The task of identifying the actual protocol of a network session, on the Internet or on a
local area network, involves choosing the correct protocol out of a set of several hundreds of
protocols.

The SPID Algorithm – Statistical Protocol IDentification

 5

3.2 Protocol Identification Research
The field of protocol identification seems to have received less attention, in the academic
research community, compared to the field of traffic classification. This is surprising since the
problem of traffic classification can effectively be reduced to the problem of protocol identi-
fication; hence a protocol identification algorithm can be used to provide traffic classification,
but not vice versa. Protocol identification does also have a larger practical value for real-
world applications compared to the more abstract task of performing traffic classification.

The research performed on protocol identification often rely on application data matching,
either by using manually created payload byte-pattern signatures (Dreger et al., 2006) or by
automatically creating application layer byte-level signatures (Haffner et al. 2005) (Ma et al.
2006). Others (Bernaille et al. 2006) (Crotti et al. 2007b) use flow statistics, such as packet-
size and inter-arrival time, to detect the protocol used in a session.

4 SPID Algorithm Details
The SPID algorithm performs protocol identification by comparing fingerprints of the investi-
gated session to pre-calculated fingerprints of known protocols. An open source proof-of-
concept implementation of the SPID algorithm will be made available on SourceForge.net.
The proof-of-concept application only allows for protocol identification of protocols which
use the TCP protocol as transport layer. The proof-of-concept application does therefore make
use of the 5-tuple2 to identify the bi-directional flow3, which constitutes the TCP session. The
SPID algorithm can, however, be used to identify protocols in any communication scheme
where there is a notion of a session, i.e. a bi-directional flow. This implies that the SPID algo-
rithm can (with various success) be used also to identify protocols that are transported or
tunnelled within protocols such as UDP, HTTP, NetBIOS, DCE RPC, ISO 8073 or even SSL.

4.1 Fingerprint Data Format
All fingerprints are represented in the form of probability distributions. This means that the
data for each fingerprint is represented by two arrays (vectors) of discrete bins; one array of
counter bins and one array of probability bins. These two arrays are in this report referred to
as being a counter vector and a probability vector.

The values of the counter vectors are non-negative integer values, where the value at each
index represents the number of times the observations (analysed packets) have triggered that
particular index.

The probability vectors are a normalised version of the counter vectors, where the values of
the probability vectors are values between 0.0 and 1.0. The sum of all values in every
probability vector is always equal to 1.0.

Index 0 … 79 80 81 82 83 84 85 … 255
Counter vector 1263 … 715 935 296 919 1056 1845 643 … 1434
Probability vect. 0.006 … 0.003 0.004 0.001 0.004 0.005 0.009 0.003 … 0.007
Figure 2 Fingerprint data example displaying byte frequency for HTTP

2 A 5-tuple is a set of: source IP, source port, destination IP, destination port and transport protocol
3 A bi-directional flow consists of the data sent in both directions for a specific 5-tuple

The SPID Algorithm – Statistical Protocol IDentification

 6

The data format used in the examples of this report uses vectors of length 256 for the counter
and probability vectors; an implementation of the SPID algorithm can, however, use any
length for these vectors.

4.2 Protocol Attribute Meters
The SPID algorithm makes use of several different protocol attribute metering techniques in
order to convert packet-level data into the previously described fingerprint data format. These
“attribute meters” are designed to make use of network flow data – such as packet size distri-
bution and packet direction distribution – as well as application level data – such as byte
frequencies, reoccurring byte-sequences and offsets for common byte-values.

AddObservation(in packetData, in packetTimestamp, in packetDirection)
GetAverageKullbackLeiblerDivergenceFrom(in protocolModel) : double
MergeWith(in otherModel) : ProtocolModel

TrainingSessionCount : int
ObservationCount : ulong

ProtocolModel

GetMeasurements(in packetData, in packetTimestamp, in packetDirection, in packetOrderNumberInSession)

AttributeName : string

IAttributeMeter

1

0..*

AddObservation(in packetData, in packetTimestamp, in packetDirection, in packetOrderNumberInSession)
GetKullbackLeiblerDivergenceFrom(in protocolAttributeModel) : double
MergeWith(in otherFingerprint) : AttributeFingerprintHandler

AttributeMeter : IAttributeMeter
AttributeFingerprint : Fingerprint

AttributeFingerprintHandler

0..*

1

IncrementFingerprintCounterAtIndex(in index)
MergeWith(in otherFingerprint) : Fingerprint

ProbabilityDistributionVector

Fingerprint

1

1

Figure 3 SPID algorithm UML class diagram

Every attribute meter holds a function called GetMeasurements , which takes the packet appli-
cation data, packet timestamp (in order to calculate packet inter-arrival time), packet order
number in session and packet direction (client to server or vice versa) as input and returns a
set of integer values. The returned integer values represent the indices, in the associated
fingerprint counter vector, that should be incremented.

int[] GetMeasurements(byte[] packetData, DateTime p acketTimestamp,
PacketDirection packetDirection, int packetOrderNum berInSession){…}

A simple attribute meter can for example have a GetMeasurements function that returns a set
of integers representing the individual byte values in the application layer of a packet. A
simple HTTP GET request such as “GET / HTTP/1.1 ”4, which is fed to such a metering

4 The double carriage return line feed required to form a valid HTTP request are omitted to simplify the example

The SPID Algorithm – Statistical Protocol IDentification

 7

function, would for example generate the following return values: 71, 69, 84, 32, 47, 32, 72, 84,

84, 80, 47, 49, 46 and 495.

Utilising information about byte positions (offsets) in the application layer data can generate
very good classification attributes for identifying protocols. One such offset-and-value-aware
attribute metering solution is to have the GetMeasurements function return a set of integers
that represent the offsets and values (1 or 0) of individual bits in the application layer data.
The following example code shows how such an attribute metering function, which looks at
the first 128 bits (16 bytes) of the application data, could be implemented:

int[] GetMeasurements(byte[] packetData, DateTime p acketTimestamp,
PacketDirection packetDirection, int packetOrderNum berInSession){
 BitArray applicationDataBits=new BitArray(packetD ata);
 List<int> measurements=new List<int>();
 for(int i=0; i<128; i++){
 if(applicationDataBits[i]==false)
 measurements.Add(2*i);
 else
 measurements.Add(2*i+1);
 }
 return measurements.ToArray();
}

The example code provided above is somewhat similar to the “Discrete byte encoding”
described by Haffner et al. in “ACAS: Automated Construction of Application Signatures”,
with the exception of bytes being replaced by bits and vice versa.

Another simple attribute measurement method is to have the GetMeasurements function return
a value based on the packet size, i.e. small packet sizes will generate low values and large
packet sizes will generate high values.

Attributes metering functions can also combine several properties into a composite attribute
meters. Examples of composite attributes meters are:

• packet direction + packet order number in session + packet size
• packet direction + packet order number in session + packet inter-arrival time
• packet direction + byte-value frequency
• packet direction + packet order number in session + byte offset-value data
• packet order number in session + byte offset-value data
• packet order number in session + byte-value frequency + packet size

More than 20 other innovative, and sometimes rather complex, attribute metering functions
will be made available as part of the open source proof-of-concept code for the SPID
algorithm.

4.3 Generating Protocol Models for Observed Sessions
The defined attribute measurement functions can be used in order to generate fingerprints for
individual network packets. The SPID algorithm is however designed to identify protocols
used in network sessions, which is why a set of attribute fingerprints (one fingerprint per
attribute meter) shall be assigned to each session rather than to every packet. Every fingerprint
and its related attribute meter are paired together in an object called “attribute fingerprint
handler”. The attribute fingerprint handler does also provide several important support func-

5 ASCII representations: 71=0x47=’G’, 69=0x45=’E’, 84=0x54=’T’ etc.

The SPID Algorithm – Statistical Protocol IDentification

 8

tions needed to, for example, compare fingerprints. Each attribute fingerprint handler is
associated with a network session. The set of attribute fingerprint handlers assigned to the
same session are contained within an object called “protocol model”.

The protocol model object is created upon the establishment of a session (after the three-way
handshake in the case of a TCP session). The fingerprints belonging to a protocol model are
empty upon creation, which means that the fingerprints’ counter vectors all have the value
zero.

Every packet with payload (application layer data) is called an observation. Each such
received observation shall be fed to the current session’s protocol model object by using the
AddObservation function. Upon receiving an observation the protocol model calls the
AddObservation function of each attribute fingerprint handler. Each attribute fingerprint
handlers do in turn call the GetMeasurements function of their associated attribute meter,
which returns a set of vector indices, and then increment the fingerprint counters at these
indices. Hence, when going back to the previous example with the HTTP GET command and
the simple packet byte attribute meter, the counters would increment from all zeroes to:

• 3 for the counter at index 84 (since there are three T’s in “GET / HTTP/ 1.1 ”)
• 2 for counters at index 32, 47 and 49 (space, ‘/’ and ‘1’)
• 1 for counters at index 71, 69, 72, 80 and 46
• 0 for all other counters

All other attribute fingerprint handlers, belonging to the same protocol model, will also
increase their counters based on the sets of indices that are returned from their respective
attribute meters’ GetMeasurements functions.

Subsequent packets in the same session will trigger the attribute fingerprint handlers of the
session’s protocol model to get more attribute measurements, which will cause the finger-
prints’ counter vector values to increment even more. A good approach is, however, to limit
the attribute metering functions to only return attribute measurements for the first number of
packets in a session. Doing so will decrease the time complexity of the algorithm as well as
allow for better precision when the protocol needs to be identified early in a session.

4.4 Generating Protocol Models for Known Protocols
Protocol models for known protocols are generated from real network traffic, preferably
stored in the “pcap” packet capture dump format. The pcap files do, however, need to be pre-
classified, either manually or automatically, in order to be used as training data for the SPID
algorithm.

The pre-classified training data is converted to protocol model objects (one per protocol) by
generating protocol models for each session and merging the fingerprints of the same protocol
and attribute type. The protocol model merger is, for every protocol, performed by adding
together the counter vector values of fingerprints of the same attribute measurement type. The
addition shall be performed pair wise for each vector index as shown in the following
example code:

for(int i=0; i<FINGERPRINT_LENGTH; i++)
 mergedCounterData[i] = counterDataA[i] + counterD ataB[i];

The SPID Algorithm – Statistical Protocol IDentification

 9

The more sessions that are merged together for each protocol, the more reliable the fingerprint
will be. A rule of thumb for how many sessions are needed, to reliably fingerprint a protocol,
is to have as many training sessions as the length of the vectors in a fingerprint (i.e. 256 for
the examples provided in this report). Early evaluations of the SPID algorithm have, however,
showed that reliable results can be achieved with as few training sessions as 10% of the
fingerprint vector length.

4.5 Comparing Fingerprints
One of the key components of the SPID algorithm is how the fingerprints of an observed
session are compared to fingerprints of know protocols. The previously described probability
vectors are used as input data for the comparison function. The counter vector values of the
observed session are first used in order to update the probability vectors, in case there has
been a change of the counter vector values since the previous fingerprint comparison.

A probability vector (Pattribute), for a specific attribute, of an observed session is compared to a
probability vector (Qattribute,protocol) of a protocol model by using the Kullback-Leibler divergence
(also known as the relative entropy) measurement.

KL-Divergence(Pattribute || Qattribute,protocol) = Σi(Pattribute(i) * log(Pattribute(i) / Qattribute,protocol(i)))

The result of the KL divergence measure is a value that represents how much extra infor-
mation, per attribute measurement, that is needed to describe the values in P (the observation
probability vector) by using a code (such as a Huffman coding) that is optimised for Q (the
model probability vector) instead of using a code optimised for P itself.

The best protocol model match for an observed observation P is the model which yields the
smallest KL divergence for the observed session, i.e. the protocol model which most
effectively (in terms of entropy) can be used to encode data with the distribution of P.

An alternative to using KL divergence is to use the cross entropy of P and Q. The cross
entropy will always yield the same best protocol match as the KL divergence since the cross
entropy for P and Q is equal to the Shannon entropy of P plus KL divergence of P and Q.

H(P,Q) = H(P) + KL-Divergence (P||Q)

One drawback of the cross entropy is that high-entropy sessions (in terms of both flow- and
application data behaviour) will generate higher cross entropies than the cross entropies of
low-entropy sessions. It can therefore be hard to determine if the best protocol match is good
enough or if it is just a false positive. This problem is eliminated when using KL divergence
since each divergence measurement is normalised with the observed session’s own entropy.
Hence, a global threshold value can be assigned when using KL divergence so that only
protocols with divergences below the threshold can be accepted as probable protocol matches.

4.6 Comparing Protocol Models
Protocol models of observed sessions are compared to protocol models of known protocols by
calculating the Kullback-Leibler divergences of the models’ attribute fingerprints. The best
protocol match is the one with the smallest average Kullback-Leibler divergence of the under-
lying attribute fingerprints. A good approach is to assign a threshold value, where Kullback-

The SPID Algorithm – Statistical Protocol IDentification

 10

Leibler divergence average values under the threshold are considered matches and larger
divergences are not.

5 Proof-of-Concept Application
The proof-of-concept application for the SPID algorithm is written in C# using the Microsoft
.NET framework. The application is designed to load two types of files; protocol model data-
base files (in XML format) and single TCP-session capture files (in pcap format). The
application automatically attempts to identify the application layer protocol when a TCP-
session capture file is loaded.

The proof-of-concept application makes use of 27 different attribute meters in order to
generate fingerprints. Many of these attribute meters are somewhat overlapping, so there is
some potential to being able to reduce the number of attribute meters in future
implementations.

5.1 Application Functionalities
A protocol model database XML-file can be loaded into the application by selecting “Import
Protocol Model Database” from the File menu. After doing so a table of protocols will appear
in the list view on the right of the user interface. The protocol models list also displays the
number of sessions and observations that have been used, in form of pre-classified training
data, to generate the fingerprints of each protocol model.

Upon loading a pcap file with a TCP session6 the application starts creating a protocol model
based on the first 100 packets in the session. The protocol model’s attribute fingerprints are
then compared to those of the known protocols in the database. The average Kullback-Leibler
divergence, between the observed session’s fingerprints and those of the known protocol
models, is displayed in the divergence column of the “Session Protocol Identification” list
view at the left. The protocol that best matches the observed session will automatically be
selected in the drop-down list below the session protocol identification list view as displayed
in the screenshot below:

6 The loaded pcap should contain only one TCP session, preferably created through the “Follow TCP stream”
functionality in Wireshark and saved with the “Displayed” packet range.

The SPID Algorithm – Statistical Protocol IDentification

 11

Figure 4 SPID Algorithm proof-of-concept application attempting to identify a TLS session

The observed session’s protocol model can be appended to an existing protocol model by
selecting the correct protocol in the drop-down list and pressing the “Add” button. A new
protocol model can also be added to the protocol model database by manually assigning a new
protocol name to the observed session. The application can also be used in order to generate a
new protocol model database from scratch by adding new protocols to an empty protocol
model database.

Different protocol model databases can also be merged into a combined protocol model
database simply by importing several protocol model databases (one at a time) into the
application. The merged database can then be saved to disk by choosing “Save Protocol
Model Database” from the file menu.

Metadata about protocols, such as their default port numbers, can be added to the protocol
model database. The port number information is not, under any circumstances, used in order
to perform the protocol identification. The purpose of adding metadata about default port
numbers is merely in order to allow other applications to use the database to, for example,
alert upon detection of protocols leeching on well known ports of other protocols (such as P2P
protocols running on TCP 80 or 443).

5.2 Protocol Model Database
The SPID proof-of-concept application will be published along with a protocol model
database, which can be used to identify a limited set of protocols. The included database will
only contain protocol models generated out of publicly available pcap files from sources such
as Wireshark Sample Captures, OpenPacket.org and Lauras Lab Kit.

The SPID Algorithm – Statistical Protocol IDentification

 12

Users of the proof-of-concept application can, however, extend the included protocol model
database with more traffic and more training data in order to support more protocols and
attain more reliable protocol identifications.

5.3 Under the Hood
The Kullback-Leibler divergence function called GetKullbackLeiblerDivergenceFrom() in
the AttributeFingerprintHandler class holds a small fix for the original KL-function, in order
to introduce some evenly distributed noise and to avoid division by zero. This fix ensures that
the KL-divergence function treats all probability vectors, in the protocol model database, as if
their corresponding counter vectors were incremented by one at all indices. The probability
vectors of observed sessions are treated as if their counter vector values were incremented by
1/VectorLength (i.e. 1/256).

The pcap file parser and the protocol dissectors for layer 2 to layer 4 are based on code from
the open source application NetworkMiner.

A more detailed description of the inner workings of the “SPID Algorithm Proof-of-Concept”
can be attained by looking at the source code, which is freely available from SourceForge at:
http://sourceforge.net/projects/spid/

The SourceForge page for the SPID algorithm also holds a binary executable application,
built for Microsoft Windows. The Microsoft .NET framework 2.0 does, however, need to be
installed on the computer in order to properly run the SPID algorithm proof-of-concept
application.

6 Evaluation
This report contains a limited amount of evaluation since there is not yet enough training and
validation data available to assess the robustness of the provided protocol identification func-
tionality.

6.1 Protocol Model Database Memory Complexity
The data rich SPID fingerprint format yields distinctly larger protocol signatures compared to,
for example, regular expression based signatures. The size of a SPID protocol model database
depends on three variables; number of protocols (P), number of used attribute meters7 (A) and
the length of the vectors (L). The memory complexity for the database is thereby O(P*A*L).
Both A and L are, however, considered being constants (with recommended values of: A=8,

L=256), so the memory complexity is in fact O(P). There is thereby a linear relationship
between the memory complexity and the number of protocols in the database. Hence, an
application that only needs a small number of protocols (in order to for example identify peer-
to-peer protocols) can in a real-case scenario have a database that requires less than 100kB
memory. A more comprehensive database of 100 protocols (which is about the number of
protocol signatures available in Cisco’s Network-Based Application Recognition as well as
the L7-filter application) would require a couple of megabytes worth of memory. Using a
low-entropy representation, such as XML, yields an overhead of more than twice the data
size, so an XML-based protocol database file for 100 protocols would require approximately
10MB of storage.

7 There will be one fingerprint for every possible protocol-attribute meter combination

The SPID Algorithm – Statistical Protocol IDentification

 13

Requiring 10MB of storage space is rather much, considering the limited amount of space
available on the flash memories used by many embedded devices, but it is within the range of
what can be considered acceptable. The possibility of compressing the database does, of
course, also exist. A 10MB protocol database in an XML format can be expected to consume
no more than 1MB of storage space after being compressed.

6.2 Operational Time and Memory Complexity
Let M be the total session fingerprints in memory and N the average number of analysed
packets with payload (a.k.a. observations) in a session. The number of protocol models in the
database is here considered to be constant, just as well as the number of protocol attributes
used and the fingerprints’ vector lengths. The packet size is also assumed to be constant, since
the maximum size of transmitted packets (MTU) is around 1500 bytes on most networks8.

Capturing packets and creating protocol model fingerprints for each session generates a
memory footprint of O(M), where M is the number of sessions needed in memory. The
session fingerprints can, depending on the purpose of the application, be released from
memory as soon as the protocol has been successfully identified.

The time complexity for capturing packets and updating a session model’s fingerprints will be
O(logM), to find the correct session model, for each received packet with payload. This yields
a time complexity per session of O(N logM).

The time complexity for identifying the protocol used in a session by using a protocol finger-
print database is O(P), where P is the number of protocols in the database. This yields a total
time complexity of O(N * (P + logM)) per session, if an effort to identify the used protocol is
performed every time a packet with payload is received.

7 Future Work
Even though the SPID algorithm looks very promising it has yet to be benchmarked against
other similar implementations to assess its potential.

7.1 Algorithm Tuning
The SPID algorithm needs to be tuned, in order to adjust parameters such as:

• Vector lengths
• Kullback-Leibler divergence threshold value
• Number of attribute meters used

One other very important tuning aspect is to choose the best combination of attribute meters,
which provides the most robust protocol identification service. The best combination of
attribute metering functions may vary depending on the requirements of a specific appli-
cation; early identification might for example be prioritised to actively block illicit traffic,
while this functionality is not very important when performing post-event analysis. My
recommendation is, however, that all implementations should use the same combination of
attribute meters. Doing so will make it easy to share attribute fingerprints for known protocols
with others in the spirit of the open source community. I am therefore planning to do evalu-
ations to find a good combination of attribute meters, which jointly can be used to reliably
identify most protocols without requiring an immense protocol model database. I am hoping

8 Ethernet has an MTU of 1500, IEEE 802.3 has 1492 and IEEE 802.11 uses 2272

The SPID Algorithm – Statistical Protocol IDentification

 14

to be able to identify a set of around eight strong and orthogonal attribute meters to replace
the current set of 27 attribute meters.

7.2 Assembling Training Data
One of the keys to performing robust protocol identification is to have a good and accurate
database of protocol fingerprints. I have unfortunately only a very limited set of training data,
due to the lack of publicly available full-content packet capture files and because of the diffi-
culties involved with getting permission to capture full-content traffic dumps from public
networks. An important next step is therefore to collect sufficient training data, either as
packet capture files or in the form of attribute measurement fingerprints, from several
different sources. Any support that can be provided in this area is warmly welcomed by me!

The current plan for this project is therefore to get in contact with as many interested parties
as possible, in order to accumulate a database with protocol models with enough natural vari-
ation. These parties can include, but might not be limited to, academic research institutions,
network infrastructure developers and private individuals.

It is also important to get a good mix of training data from various types of networks, since
both packet inter-arrival times and packet sizes might vary depending on the network’s band-
width and latency as well as the data link type.

7.3 Implementation
I am also planning to implement the SPID algorithm as a part of the NetworkMiner appli-
cation, which is an open source Network Forensic Analysis Tool (NFAT) that I have
developed. This way NetworkMiner will no longer have to rely on port numbers in order to
select the correct application layer protocol parser for a network session.

One of my long-term goals with the SPID algorithm is to have the SPID algorithm imple-
mented and used in network infrastructure devices and network security devices. This is also
the field where I believe the SPID algorithm will be of most benefit.

The SPID Algorithm – Statistical Protocol IDentification

 15

8 References

Auld, Moore and Gull (2007), “Bayesian neural networks for Internet traffic classification”.
IEEE Transactions on Neural Networks, 18 (1). ISSN 1045-9227

Bejtlich (2006), “Port Independent Protocol Identification”. TaoSecurity blog
http://taosecurity.blogspot.com/2006/09/port-independent-protocol.html

Bernaille, Teixeira and Salamatian (2006), “Early Application Identification”. Conference on
Future Networking Technologies CONEXT 06, Lisbonne.

Cisco (2006), “Enabling Protocol Discovery”.
http://www.cisco.com/univercd/cc/td/doc/product/software/ios124/124tcg/tqos_c/part_05/qsn
bar2.pdf

Cisco (2007), “Classifying Network Traffic Using NBAR”.
http://www.cisco.com/univercd/cc/td/doc/product/software/ios124/124tcg/tqos_c/part_05/qsn
bar1.pdf

Crotti, Dusi, Este, Gringoli, Salgarelli (2007a), “Application Protocol Fingerprinting for
Traffic Classification”. GTTI 2007.

Crotti, Dusi, Gringoli and Salgarelli (2007b), “Traffic Classification through Simple
Statistical Fingerprinting”, ACM SIGCOMM Computer Communication Review, 37(1),
January 2007.

Dhamankar and King (2007), “Protocol Identification via Statistical Analysis”. Black Hat
USA 2007.
https://www.blackhat.com/presentations/bh-usa-07/Dhamankar_and_King/Presentation/bh-
usa-07-dhamankar_and_king.pdf

Dreger, Feldmann, Mai, Paxson and Sommer (2006), “Dynamic Application-Layer Protocol
Analysis for Network Intrusion Detection”. Proceedings of USENIX Security Symposium.
August 2006

Erman, Mahanti, Arlitt, Cohen, Williamson (2007), “Offline/Realtime Traffic Classification
Using Semi- Supervised Learning”. SIGMETRICS 2007.

Haffner, Sen, Spatscheck, Wang (2005), ”ACAS: Automated Construction of Application
Signatures”. Proceedings of the ACM SIGCOMM 2005.

John and Tafvelin (2008), “Heuristics to Classify Internet Backbone Traffic based on
Connection Patterns”. IEEE ICOIN08

Juniper Networks, “IDP Application Identification Feature Demo”
http://www.juniper.net/products_and_services/intrusion_prevention_solutions/idp_application
_video.html

The SPID Algorithm – Statistical Protocol IDentification

 16

Karagiannis, Papagiannaki and Faloutsos (2005), “BLINC: multilevel traffic classification in
the dark”. SIGCOMM 2005.

L7-filter, “Application Layer Packet Classifier for Linux”
http://l7-filter.sourceforge.net/

L7-filter, “L7-filter Pattern Writing HOWTO”
http://l7-filter.sourceforge.net/Pattern-HOWTO

Lee, C.S. (2008), “Basic Fl0p Signature Writing Guide”.
http://www.rawpacket.org/anonymous/papers/Fl0p-Sigs-Writing.pdf

Li and Moore (2007), “A Machine Learning Approach for Efficient Traffic Classification”
proc. of IEEE MASCOTS’07.

Ma, Levchenko, Kreibich, Savage and Voelker (2006), “Unexpected means of protocol
inference”. Internet Measurement Conference 2006

Madhukar and Williamson (2006), “A Longitudinal Study of P2P Traffic Classification”.
Proceedings of the 14th IEEE international Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS’06)

NetScout (2008), “Sniffer Application Intelligence – Application performance analysis for
networking professionals”. NetScout Technology Application Note 2008-04-16.
http://www.netscout.com/docs/appnotes/NetScout_appnote_Application_Intelligence.pdf

De Montigny-Leboeuf (2005), “Flow Attributes For Use In Traffic Characterization”. CRC
Technical Note, CRC-TN-2005-003, December 2005.

Moore and Papagiannaki (2005), “Toward the accurate identification of network
applications”. Passive & Active Measurement Workshop 2005 (PAM2005)

NetworkMiner Wiki
http://networkminer.wiki.sourceforge.net/NetworkMiner

Protocolinfo, “EDonkey – Protocolinfo”.
http://www.protocolinfo.org/wiki/EDonkey

SPID Algorithm Proof-of-Concept application open source project
http://sourceforge.net/projects/spid/

Zhang and Paxson (2000), “Detecting Backdoors”. Proc. 9th USENIX Security Symposium,
August 2000.

