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Abstract 
Identifying which application layer protocol is being used within a network communication 
session is important when assigning Quality of Service priorities as well as when conducting 
network security monitoring. Currently most protocol identification is performed through 
signature matching algorithms that rely on strings or regular expressions as signatures. This 
report presents a protocol identification scheme called the Statistical Protocol Identification 
(SPID) algorithm, which reliably identifies the application layer protocol by using statistical 
measurements of flow data as well as application layer data. The SPID algorithm utilises 
Kullback-Leibler divergence measurements to compare probability vectors created from 
observed network traffic to probability vectors of known protocols. 
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1 Introduction 
Network intrusion detection systems (NIDS) analyse application layer data in order to detect 
illicit network traffic, such as attacks and security policy violations. Different analysis engines 
(protocol parsers) need to be used depending on which application layer protocol is being 
used in a network communication session. Most NIDS deduce which application layer 
protocol is being used in a session by using the list of well-known ports assigned by the Inter-
national Assigned Number Authority (IANA) (Dreger et al., 2006). Other solutions that often 
use port numbers to deduce the application layer protocol are systems that assign Quality of 
Service (QoS) priorities and traffic shaping algorithms. 
 
Several studies have, however, reported that only 50-70% of the Internet traffic is classifiable 
using the IANA port number list (Moore and Papagiannaki, 2005) (Madhukar and 
Williamson, 2006). One reason for this is that some applications do, for example, try to avoid 
detection from network security monitoring solutions by not using standard port numbers 
(Dreger et al., 2006) (Haffner et al., 2005). Peer-to-peer (P2P) protocols belong to one such 
traffic type that intentionally uses random port numbers for communication (Karagiannis et 
al., 2005) in order to evade traffic filters as well as legal implications (John and Tafvelin, 
2008). 
 
Backdoors, installed by hackers on compromised systems, are often disguised by using other 
ports than the well-known IANA assigned ports for Telnet, Rlogin, SSH or whatever protocol 
the backdoor is using (Zhang and Paxson, 2000). There are also several other applications that 
leech on well-known ports of other protocols for their communication (Li and Moore, 2007), 
often with the purpose of traversing firewalls (Haffner et al., 2005). Some of the more 
commonly leeched-on TCP ports are therefore ports 80 (HTTP) and 443 (HTTP over 
SSL/TLS). 

1.1 SPID Overview 
This report presents a scheme designed to perform protocol identification based on statistical 
measurements of various protocol attributes. The concept of protocol identification is also 
known as application identification (Haffner et al., 2005) (Bernaille et al. 2006) (Juniper 
Networks), Port Independent Protocol Identification (Bejtlich, 2006), Protocol Discovery 
(Cisco, 2006) and Application Recognition (Cisco, 2007). 
 
The herein described protocol identification algorithm, which is developed by Erik Hjelmvik, 
is called the Statistical Protocol IDentification (SPID) algorithm. The SPID algorithm is 
designed to reliably identify which protocol is being used in a network communication 
session. Key requirements for the algorithm are: 
 

1. Small protocol database size 
2. Low time complexity 
3. Early identification of the protocol in a session 
4. Reliable and accurate protocol identification 

 
The motivation for these requirements 1 and 2 are that it shall be possible to run the SPID 
algorithm in real-time on an embedded network device, which has limited memory and 
processing capabilities. The motivation for requirement 3 is that it shall be possible to use the 
results from the SPID algorithm in a live traffic capturing environment to automatically take 
measures in order to, for example, provide quality of service (QoS) to an active session, block 
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illicit traffic or store related traffic for off-line analysis1. Haffner et al. (2005) also point out 
the need for enterprises to degrade P2P services (via rate-limiting, service differentiation and 
blocking) on their networks in favour of the performance for business critical applications. I 
have therefore required that the protocol must be identifiable, with the SPID algorithm, based 
on only the four first application data packets (i.e. not counting the flow control signalling 
packets) in a session. Requirement 4 does not need any further motivation than the obvious 
“in order to provide a high quality service”. 
 
The SPID algorithm performs protocol identification by using statistical fingerprints. The 
statistical fingerprints, of a session or known protocol, are part of an object called “Protocol 
Model”. The application layer protocol in a session is identified by comparing its protocol 
model to protocol models of known protocols. 

Sniffed TCP 
Session Data Protocol Models

of
Known Protocols

Protocol 
Model 

Generation

Protocol Model
of

Unknown Protocol

Protocol 
Model

Comparison

Best Protocol 
Match

 
Figure 1 Protocol Identification Data Flow 
 
The SPID algorithm present a reliable method for identifying protocols based on both flow 
and application data. The strong identification feature is a result of the innovative protocol 
attribute metering functions, the protocol models’ rich data format and the model comparison 
algorithm. 
 
The SPID algorithm does not require any manual creation of protocol signatures; but it does 
require training data that is pre-classified based on protocol, in order to generate a protocol 
model database. The protocol model data format allows for the protocol models to be updated 
as new training data becomes available, without having access to the previously used training 
data. 
 

2 Related Software Applications 

2.1 L7-filter 
L7-filter (l7-filter.sourceforge.net) is an open source project which focuses on identifying the 
application level (layer 7 in the OSI reference model) protocol. It does so by using manually 
crafted pattern files, which contain regular expressions (RegEx) for the protocols they are 
designed to identify. There are at the time of writing somewhere over 100 RegEx pattern files 
available at the L7-filter project page. 
 
L7-filter is the de-facto open source application used in order to identify the application layer 
protocol without relying on IANA-assigned port numbers. The L7-filter application does, 
however, have some shortcomings such as being prone to produce false positives. The L7-
filter project’s wiki page (www.protocolinfo.org) does, for example, mention the following 
statement regarding the protocol pattern for the P2P protocol eDonkey: 

                                                 
1 Performing off-line analysis of traffic is useful in, for example, network forensic investigations 
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“This is a difficult protocol to match with regular expressions. The l7-filter pattern will falsely 
identify about 1% of random data as eDonkey.” 
 
Patterns that makes extensive use of wildcards and logic operators tend to require a great deal 
of processing power, according to the L7-filter Pattern Writing HOWTO. Hence, the required 
time to compare network data to a protocol pattern is not deterministic and might vary a great 
deal depending on how the pattern is written. 
 
Another problem with the L7-filter patterns is that the fingerprints have to be manually 
created, which means that network traffic and/or protocol specifications need to be studied 
and abstracted in order to create a reliable protocol identification pattern. The task of writing 
patterns that minimise the required processing power, when performing pattern matching, 
increases the manual labour furthermore. 

2.2 Fl0p 
Michal Zalewski has developed a proof-of-concept application, called Fl0p, which is designed 
to extract interesting information from network flow data. The input data to the Fl0p appli-
cation is flow statistics, such as packet sizes and packet inter-arrival times (i.e. without 
inspecting application payloads). Fl0p can be used in order to, for example, tell users apart 
from automated bots even for encrypted protocols.  
 
The fingerprint database for Fl0p does unfortunately only contain a very limited set of finger-
prints, but there are some independent initiatives to create additional fingerprints for Fl0p 
(C.S. Lee, 2008). A fair amount of manual labour is required in order to generate a Fl0p 
fingerprint, just as for L7-filter. 

2.3 PISA 
PISA is a yet-to-be-publicly-released open source application, which uses application layer 
data (application data entropy) as well as flow statistics (packet sizes and packet inter-arrival 
times) to identify the application layer protocol (Dhamankar and King, 2007). The PISA 
application is developed by Rohit Dhamankar and Rob King of TippingPoint, and was first 
presented at Black Hat USA 2007.  
 
PISA uses a 10-dimential representation of each fingerprint, where the dimensions are made 
up of average values and standard deviations of packet sizes and response times as well as the 
Shannon entropy of the application layer data. One nice feature of PISA is that protocol 
fingerprints can be generated automatically directly from pre-classified pcap files. 
 
The PISA implementation uses a rather slim representation for the fingerprints, i.e. only 
average values and standard deviations, instead of using a more rich representation such as a 
probability density function or a probability vector. PISA also does not utilise several inherent 
properties of many protocols, such as consistently having the same byte values at a fixed 
offset in each packet as well as the order and direction in which the packets in a session are 
exchanged between the client and server. Because of these limitations the protocol of an 
observed session cannot be reliably identified by using PISA until some hundreds of packets 
have been observed. Fairly good protocol detection could, according to the creators of PISA, 
however be performed after just a dozen packets, given a large enough training set. 
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2.4 Proprietary Implementations 
There are several commercial solutions that perform protocol identification, some examples 
are NetScout’s Sniffer Application Intelligence (NetScout, 2008), Cisco’s NBAR (Cisco, 
2007) and Juniper’s Application Identification. There is unfortunately very little information 
available regarding how the protocol identification is performed in these proprietary systems. 
A qualified guess is, however, that the implementations make use of string matching in a 
similar manner as L7-filter.  

3 Related Academic Research 

3.1 Traffic Classification Research 
Traffic classification is the science of automatically assigning a traffic class, such as P2P, 
web, email, chat or gaming, to a network session. The classification algorithms do in most 
cases make use of flow statistics (Erman, 2007) (Crotti et al., 2007a) (Auld et al., 2007) (De 
Montigny-Leboeuf, 2005) (Bernaille et al. 2006), such as duration, bytes transferred, packet 
inter-arrival time and packet size. 
 
Using flow statistics rather than inspecting full packet data (including application data) has 
several advantages: 

• Network flow data can easily be extracted from most network routers 
• Handling and manual inspection of network flows does not intrude on the privacy of 

the network users to the same extent as when application data is handled 
• Network flows require a significant lesser amount of data compared to full content 

packet data 
 
The algorithms used for traffic classification are in most cases based on linear approximation 
algorithms, such as naïve Bayes and Hidden Markov Models. 
 
A shortcoming of many traffic classification algorithms is that they cannot reliably identify 
the traffic type until all, or at least several thousand packets (Erman, 2007), of the traffic from 
a network session has been analysed.  
 
Some researchers use connection patterns (Kargiannis et al., 2005) (John and Tafvelin, 2008) 
in order to tie an IP-port pair to a traffic category. These methods make use of host behaviours 
such as number of connected hosts, if the host is a service provider or consumer and which 
other IP-port pairs the host is connected to. This is a powerful method since the classification 
can be based on several flows rather than a single session or flow. One drawback of using 
connection patterns is that the algorithm with time will be required to hold an unreasonably 
large database of IP-port information. Connection pattern classification schemes can also not 
be used if a single session is to be analysed, without having access to additional data about the 
hosts’ connection pattern behaviours. 
 
It should also be noted that the classification methods used for traffic classification are based 
on a simplistic model where there are only 4 to 9 different types of traffic classes to choose 
from. The task of identifying the actual protocol of a network session, on the Internet or on a 
local area network, involves choosing the correct protocol out of a set of several hundreds of 
protocols. 
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3.2 Protocol Identification Research 
The field of protocol identification seems to have received less attention, in the academic 
research community, compared to the field of traffic classification. This is surprising since the 
problem of traffic classification can effectively be reduced to the problem of protocol identi-
fication; hence a protocol identification algorithm can be used to provide traffic classification, 
but not vice versa. Protocol identification does also have a larger practical value for real-
world applications compared to the more abstract task of performing traffic classification.  
 
The research performed on protocol identification often rely on application data matching, 
either by using manually created payload byte-pattern signatures (Dreger et al., 2006) or by 
automatically creating application layer byte-level signatures (Haffner et al. 2005) (Ma et al. 
2006). Others (Bernaille et al. 2006) (Crotti et al. 2007b) use flow statistics, such as packet-
size and inter-arrival time, to detect the protocol used in a session. 

4 SPID Algorithm Details 
The SPID algorithm performs protocol identification by comparing fingerprints of the investi-
gated session to pre-calculated fingerprints of known protocols. An open source proof-of-
concept implementation of the SPID algorithm will be made available on SourceForge.net. 
The proof-of-concept application only allows for protocol identification of protocols which 
use the TCP protocol as transport layer. The proof-of-concept application does therefore make 
use of the 5-tuple2 to identify the bi-directional flow3, which constitutes the TCP session. The 
SPID algorithm can, however, be used to identify protocols in any communication scheme 
where there is a notion of a session, i.e. a bi-directional flow. This implies that the SPID algo-
rithm can  (with various success) be used also to identify protocols that are transported or 
tunnelled within protocols such as UDP, HTTP, NetBIOS, DCE RPC, ISO 8073 or even SSL. 

4.1 Fingerprint Data Format 
All fingerprints are represented in the form of probability distributions. This means that the 
data for each fingerprint is represented by two arrays (vectors) of discrete bins; one array of 
counter bins and one array of probability bins. These two arrays are in this report referred to 
as being a counter vector and a probability vector. 
 
The values of the counter vectors are non-negative integer values, where the value at each 
index represents the number of times the observations (analysed packets) have triggered that 
particular index. 
  
The probability vectors are a normalised version of the counter vectors, where the values of 
the probability vectors are values between 0.0 and 1.0. The sum of all values in every 
probability vector is always equal to 1.0. 
                                                                                                                                                                                                                                                                                                                                   
Index 0 … 79 80 81 82 83 84 85 … 255 
Counter vector 1263 … 715 935 296 919 1056 1845 643 … 1434 
Probability vect. 0.006 … 0.003 0.004 0.001 0.004 0.005 0.009 0.003 … 0.007 
Figure 2 Fingerprint data example displaying byte frequency for HTTP 
 

                                                 
2 A 5-tuple is a set of: source IP, source port, destination IP, destination port and transport protocol 
3 A bi-directional flow consists of the data sent in both directions for a specific 5-tuple 
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The data format used in the examples of this report uses vectors of length 256 for the counter 
and probability vectors; an implementation of the SPID algorithm can, however, use any 
length for these vectors.  

4.2 Protocol Attribute Meters 
The SPID algorithm makes use of several different protocol attribute metering techniques in 
order to convert packet-level data into the previously described fingerprint data format. These 
“attribute meters” are designed to make use of network flow data – such as packet size distri-
bution and packet direction distribution – as well as application level data – such as byte 
frequencies, reoccurring byte-sequences and offsets for common byte-values. 
 

AddObservation(in packetData, in packetTimestamp, in packetDirection)
GetAverageKullbackLeiblerDivergenceFrom(in protocolModel) : double
MergeWith(in otherModel) : ProtocolModel

TrainingSessionCount : int
ObservationCount : ulong

ProtocolModel

GetMeasurements(in packetData, in packetTimestamp, in packetDirection, in packetOrderNumberInSession)

AttributeName : string

IAttributeMeter

1

0..*

AddObservation(in packetData, in packetTimestamp, in packetDirection, in packetOrderNumberInSession)
GetKullbackLeiblerDivergenceFrom(in protocolAttributeModel) : double
MergeWith(in otherFingerprint) : AttributeFingerprintHandler

AttributeMeter : IAttributeMeter
AttributeFingerprint : Fingerprint

AttributeFingerprintHandler

0..*

1

IncrementFingerprintCounterAtIndex(in index)
MergeWith(in otherFingerprint) : Fingerprint

ProbabilityDistributionVector

Fingerprint

1

1

 
Figure 3 SPID algorithm UML class diagram 
 
Every attribute meter holds a function called GetMeasurements , which takes the packet appli-
cation data, packet timestamp (in order to calculate packet inter-arrival time), packet order 
number in session and packet direction (client to server or vice versa) as input and returns a 
set of integer values. The returned integer values represent the indices, in the associated 
fingerprint counter vector, that should be incremented. 
 
int[] GetMeasurements(byte[] packetData, DateTime p acketTimestamp, 
PacketDirection packetDirection, int packetOrderNum berInSession){…} 

 
A simple attribute meter can for example have a GetMeasurements  function that returns a set 
of integers representing the individual byte values in the application layer of a packet. A 
simple HTTP GET request such as “GET / HTTP/1.1 ”4, which is fed to such a metering 

                                                 
4 The double carriage return line feed required to form a valid HTTP request are omitted to simplify the example 
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function, would for example generate the following return values: 71, 69, 84, 32, 47, 32, 72, 84, 

84, 80, 47, 49, 46 and 495. 
 
Utilising information about byte positions (offsets) in the application layer data can generate 
very good classification attributes for identifying protocols. One such offset-and-value-aware 
attribute metering solution is to have the GetMeasurements  function return a set of integers 
that represent the offsets and values (1 or 0) of individual bits in the application layer data. 
The following example code shows how such an attribute metering function, which looks at 
the first 128 bits (16 bytes) of the application data, could be implemented: 
 
int[] GetMeasurements(byte[] packetData, DateTime p acketTimestamp, 
PacketDirection packetDirection, int packetOrderNum berInSession){ 
  BitArray applicationDataBits=new BitArray(packetD ata); 
  List<int> measurements=new List<int>(); 
  for(int i=0; i<128; i++){ 
    if(applicationDataBits[i]==false) 
      measurements.Add(2*i); 
    else 
      measurements.Add(2*i+1); 
  } 
  return measurements.ToArray(); 
} 

 
The example code provided above is somewhat similar to the “Discrete byte encoding” 
described by Haffner et al. in “ACAS: Automated Construction of Application Signatures”, 
with the exception of bytes being replaced by bits and vice versa. 
 
Another simple attribute measurement method is to have the GetMeasurements  function return 
a value based on the packet size, i.e. small packet sizes will generate low values and large 
packet sizes will generate high values. 
 
Attributes metering functions can also combine several properties into a composite attribute 
meters. Examples of composite attributes meters are: 

• packet direction + packet order number in session + packet size 
• packet direction + packet order number in session + packet inter-arrival time 
• packet direction + byte-value frequency 
• packet direction + packet order number in session + byte offset-value data 
• packet order number in session + byte offset-value data 
• packet order number in session + byte-value frequency + packet size 

 
More than 20 other innovative, and sometimes rather complex, attribute metering functions 
will be made available as part of the open source proof-of-concept code for the SPID 
algorithm. 

4.3 Generating Protocol Models for Observed Sessions 
The defined attribute measurement functions can be used in order to generate fingerprints for 
individual network packets. The SPID algorithm is however designed to identify protocols 
used in network sessions, which is why a set of attribute fingerprints (one fingerprint per 
attribute meter) shall be assigned to each session rather than to every packet. Every fingerprint 
and its related attribute meter are paired together in an object called “attribute fingerprint 
handler”. The attribute fingerprint handler does also provide several important support func-

                                                 
5 ASCII representations: 71=0x47=’G’, 69=0x45=’E’, 84=0x54=’T’ etc. 
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tions needed to, for example, compare fingerprints. Each attribute fingerprint handler is 
associated with a network session. The set of attribute fingerprint handlers assigned to the 
same session are contained within an object called “protocol model”. 
 
The protocol model object is created upon the establishment of a session (after the three-way 
handshake in the case of a TCP session). The fingerprints belonging to a protocol model are 
empty upon creation, which means that the fingerprints’ counter vectors all have the value 
zero. 
 
Every packet with payload (application layer data) is called an observation. Each such 
received observation shall be fed to the current session’s protocol model object by using the 
AddObservation  function. Upon receiving an observation the protocol model calls the 
AddObservation  function of each attribute fingerprint handler. Each attribute fingerprint 
handlers do in turn call the GetMeasurements  function of their associated attribute meter, 
which returns a set of vector indices, and then increment the fingerprint counters at these 
indices. Hence, when going back to the previous example with the HTTP GET command and 
the simple packet byte attribute meter, the counters would increment from all zeroes to: 
 

• 3 for the counter at index 84 (since there are three T’s in “GET / HTTP/ 1.1 ”) 
• 2 for counters at index 32, 47 and 49 (space, ‘/’ and ‘1’) 
• 1 for counters at index 71, 69, 72, 80 and 46 
• 0 for all other counters 

 
All other attribute fingerprint handlers, belonging to the same protocol model, will also 
increase their counters based on the sets of indices that are returned from their respective 
attribute meters’ GetMeasurements  functions. 
 
Subsequent packets in the same session will trigger the attribute fingerprint handlers of the 
session’s protocol model to get more attribute measurements, which will cause the finger-
prints’ counter vector values to increment even more. A good approach is, however, to limit 
the attribute metering functions to only return attribute measurements for the first number of 
packets in a session. Doing so will decrease the time complexity of the algorithm as well as 
allow for better precision when the protocol needs to be identified early in a session. 
 

4.4 Generating Protocol Models for Known Protocols 
Protocol models for known protocols are generated from real network traffic, preferably 
stored in the “pcap” packet capture dump format. The pcap files do, however, need to be pre-
classified, either manually or automatically, in order to be used as training data for the SPID 
algorithm. 
 
The pre-classified training data is converted to protocol model objects (one per protocol) by 
generating protocol models for each session and merging the fingerprints of the same protocol 
and attribute type. The protocol model merger is, for every protocol, performed by adding 
together the counter vector values of fingerprints of the same attribute measurement type. The 
addition shall be performed pair wise for each vector index as shown in the following 
example code: 
 
for(int i=0; i<FINGERPRINT_LENGTH; i++) 
  mergedCounterData[i] = counterDataA[i] + counterD ataB[i]; 
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The more sessions that are merged together for each protocol, the more reliable the fingerprint 
will be. A rule of thumb for how many sessions are needed, to reliably fingerprint a protocol, 
is to have as many training sessions as the length of the vectors in a fingerprint (i.e. 256 for 
the examples provided in this report). Early evaluations of the SPID algorithm have, however, 
showed that reliable results can be achieved with as few training sessions as 10% of the 
fingerprint vector length. 

4.5 Comparing Fingerprints 
One of the key components of the SPID algorithm is how the fingerprints of an observed 
session are compared to fingerprints of know protocols. The previously described probability 
vectors are used as input data for the comparison function. The counter vector values of the 
observed session are first used in order to update the probability vectors, in case there has 
been a change of the counter vector values since the previous fingerprint comparison. 
 
A probability vector (Pattribute), for a specific attribute, of an observed session is compared to a 
probability vector (Qattribute,protocol) of a protocol model by using the Kullback-Leibler divergence 
(also known as the relative entropy) measurement.  
 

KL-Divergence(Pattribute || Qattribute,protocol) = Σi( Pattribute(i) * log( Pattribute(i) / Qattribute,protocol(i) ) ) 

 
The result of the KL divergence measure is a value that represents how much extra infor-
mation, per attribute measurement, that is needed to describe the values in P (the observation 
probability vector) by using a code (such as a Huffman coding) that is optimised for Q (the 
model probability vector) instead of using a code optimised for P itself. 
 
The best protocol model match for an observed observation P is the model which yields the 
smallest KL divergence for the observed session, i.e. the protocol model which most 
effectively (in terms of entropy) can be used to encode data with the distribution of P. 
 
An alternative to using KL divergence is to use the cross entropy of P and Q. The cross 
entropy will always yield the same best protocol match as the KL divergence since the cross 
entropy for P and Q is equal to the Shannon entropy of P plus KL divergence of P and Q. 
 
H(P,Q) = H(P) + KL-Divergence (P||Q) 
 
One drawback of the cross entropy is that high-entropy sessions (in terms of both flow- and 
application data behaviour) will generate higher cross entropies than the cross entropies of 
low-entropy sessions. It can therefore be hard to determine if the best protocol match is good 
enough or if it is just a false positive. This problem is eliminated when using KL divergence 
since each divergence measurement is normalised with the observed session’s own entropy. 
Hence, a global threshold value can be assigned when using KL divergence so that only 
protocols with divergences below the threshold can be accepted as probable protocol matches. 

4.6 Comparing Protocol Models 
Protocol models of observed sessions are compared to protocol models of known protocols by 
calculating the Kullback-Leibler divergences of the models’ attribute fingerprints. The best 
protocol match is the one with the smallest average Kullback-Leibler divergence of the under-
lying attribute fingerprints. A good approach is to assign a threshold value, where Kullback-
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Leibler divergence average values under the threshold are considered matches and larger 
divergences are not. 
 

5 Proof-of-Concept Application 
The proof-of-concept application for the SPID algorithm is written in C# using the Microsoft 
.NET framework. The application is designed to load two types of files; protocol model data-
base files (in XML format) and single TCP-session capture files (in pcap format). The 
application automatically attempts to identify the application layer protocol when a TCP-
session capture file is loaded. 
 
The proof-of-concept application makes use of 27 different attribute meters in order to 
generate fingerprints. Many of these attribute meters are somewhat overlapping, so there is 
some potential to being able to reduce the number of attribute meters in future 
implementations. 
 

5.1 Application Functionalities 
A protocol model database XML-file can be loaded into the application by selecting “Import 
Protocol Model Database” from the File menu. After doing so a table of protocols will appear 
in the list view on the right of the user interface. The protocol models list also displays the 
number of sessions and observations that have been used, in form of pre-classified training 
data, to generate the fingerprints of each protocol model. 
 
Upon loading a pcap file with a TCP session6 the application starts creating a protocol model 
based on the first 100 packets in the session. The protocol model’s attribute fingerprints are 
then compared to those of the known protocols in the database. The average Kullback-Leibler 
divergence, between the observed session’s fingerprints and those of the known protocol 
models, is displayed in the divergence column of the “Session Protocol Identification” list 
view at the left. The protocol that best matches the observed session will automatically be 
selected in the drop-down list below the session protocol identification list view as displayed 
in the screenshot below: 

                                                 
6 The loaded pcap should contain only one TCP session, preferably created through the “Follow TCP stream” 
functionality in Wireshark and saved with the “Displayed” packet range. 
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Figure 4 SPID Algorithm proof-of-concept application attempting to identify a TLS session 
 
The observed session’s protocol model can be appended to an existing protocol model by 
selecting the correct protocol in the drop-down list and pressing the “Add” button. A new 
protocol model can also be added to the protocol model database by manually assigning a new 
protocol name to the observed session. The application can also be used in order to generate a 
new protocol model database from scratch by adding new protocols to an empty protocol 
model database. 
 
Different protocol model databases can also be merged into a combined protocol model 
database simply by importing several protocol model databases (one at a time) into the 
application. The merged database can then be saved to disk by choosing “Save Protocol 
Model Database” from the file menu. 
 
Metadata about protocols, such as their default port numbers, can be added to the protocol 
model database. The port number information is not, under any circumstances, used in order 
to perform the protocol identification. The purpose of adding metadata about default port 
numbers is merely in order to allow other applications to use the database to, for example, 
alert upon detection of protocols leeching on well known ports of other protocols (such as P2P 
protocols running on TCP 80 or 443). 
 

5.2 Protocol Model Database 
The SPID proof-of-concept application will be published along with a protocol model 
database, which can be used to identify a limited set of protocols. The included database will 
only contain protocol models generated out of publicly available pcap files from sources such 
as Wireshark Sample Captures, OpenPacket.org and Lauras Lab Kit. 
 



The SPID Algorithm – Statistical Protocol IDentification 

 12 

Users of the proof-of-concept application can, however, extend the included protocol model 
database with more traffic and more training data in order to support more protocols and 
attain more reliable protocol identifications. 

5.3 Under the Hood 
The Kullback-Leibler divergence function called GetKullbackLeiblerDivergenceFrom() in 
the AttributeFingerprintHandler class holds a small fix for the original KL-function, in order 
to introduce some evenly distributed noise and to avoid division by zero. This fix ensures that 
the KL-divergence function treats all probability vectors, in the protocol model database, as if 
their corresponding counter vectors were incremented by one at all indices. The probability 
vectors of observed sessions are treated as if their counter vector values were incremented by 
1/VectorLength (i.e. 1/256). 
 
The pcap file parser and the protocol dissectors for layer 2 to layer 4 are based on code from 
the open source application NetworkMiner. 
 
A more detailed description of the inner workings of the “SPID Algorithm Proof-of-Concept” 
can be attained by looking at the source code, which is freely available from SourceForge at:  
http://sourceforge.net/projects/spid/ 
 
The SourceForge page for the SPID algorithm also holds a binary executable application, 
built for Microsoft Windows. The Microsoft .NET framework 2.0 does, however, need to be 
installed on the computer in order to properly run the SPID algorithm proof-of-concept 
application. 

6  Evaluation 
This report contains a limited amount of evaluation since there is not yet enough training and 
validation data available to assess the robustness of the provided protocol identification func-
tionality. 

6.1 Protocol Model Database Memory Complexity 
The data rich SPID fingerprint format yields distinctly larger protocol signatures compared to, 
for example, regular expression based signatures. The size of a SPID protocol model database 
depends on three variables; number of protocols (P), number of used attribute meters7 (A) and 
the length of the vectors (L). The memory complexity for the database is thereby O(P*A*L). 
Both A and L are, however, considered being constants (with recommended values of: A=8, 

L=256), so the memory complexity is in fact O(P). There is thereby a linear relationship 
between the memory complexity and the number of protocols in the database. Hence, an 
application that only needs a small number of protocols (in order to for example identify peer-
to-peer protocols) can in a real-case scenario have a database that requires less than 100kB 
memory. A more comprehensive database of 100 protocols (which is about the number of 
protocol signatures available in Cisco’s Network-Based Application Recognition as well as 
the L7-filter application) would require a couple of megabytes worth of memory. Using a 
low-entropy representation, such as XML, yields an overhead of more than twice the data 
size, so an XML-based protocol database file for 100 protocols would require approximately 
10MB of storage. 
 

                                                 
7 There will be one fingerprint for every possible protocol-attribute meter combination 
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Requiring 10MB of storage space is rather much, considering the limited amount of space 
available on the flash memories used by many embedded devices, but it is within the range of 
what can be considered acceptable. The possibility of compressing the database does, of 
course, also exist. A 10MB protocol database in an XML format can be expected to consume 
no more than 1MB of storage space after being compressed. 

6.2 Operational Time and Memory Complexity 
Let M be the total session fingerprints in memory and N the average number of analysed 
packets with payload (a.k.a. observations) in a session. The number of protocol models in the 
database is here considered to be constant, just as well as the number of protocol attributes 
used and the fingerprints’ vector lengths. The packet size is also assumed to be constant, since 
the maximum size of transmitted packets (MTU) is around 1500 bytes on most networks8. 
 
Capturing packets and creating protocol model fingerprints for each session generates a 
memory footprint of O(M), where M is the number of sessions needed in memory. The 
session fingerprints can, depending on the purpose of the application, be released from 
memory as soon as the protocol has been successfully identified. 
 
The time complexity for capturing packets and updating a session model’s fingerprints will be 
O(logM), to find the correct session model, for each received packet with payload. This yields 
a time complexity per session of O(N logM). 
 
The time complexity for identifying the protocol used in a session by using a protocol finger-
print database is O(P), where P is the number of protocols in the database. This yields a total 
time complexity of O(N * (P + logM) ) per session, if an effort to identify the used protocol is 
performed every time a packet with payload is received. 

7 Future Work 
Even though the SPID algorithm looks very promising it has yet to be benchmarked against 
other similar implementations to assess its potential. 

7.1 Algorithm Tuning 
The SPID algorithm needs to be tuned, in order to adjust parameters such as: 

• Vector lengths 
• Kullback-Leibler divergence threshold value 
• Number of attribute meters used 

 
One other very important tuning aspect is to choose the best combination of attribute meters, 
which provides the most robust protocol identification service. The best combination of 
attribute metering functions may vary depending on the requirements of a specific appli-
cation; early identification might for example be prioritised to actively block illicit traffic, 
while this functionality is not very important when performing post-event analysis. My 
recommendation is, however, that all implementations should use the same combination of 
attribute meters. Doing so will make it easy to share attribute fingerprints for known protocols 
with others in the spirit of the open source community. I am therefore planning to do evalu-
ations to find a good combination of attribute meters, which jointly can be used to reliably 
identify most protocols without requiring an immense protocol model database. I am hoping 

                                                 
8 Ethernet has an MTU of 1500, IEEE 802.3 has 1492 and IEEE 802.11 uses 2272 
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to be able to identify a set of around eight strong and orthogonal attribute meters to replace 
the current set of 27 attribute meters. 

7.2 Assembling Training Data 
One of the keys to performing robust protocol identification is to have a good and accurate 
database of protocol fingerprints. I have unfortunately only a very limited set of training data, 
due to the lack of publicly available full-content packet capture files and because of the diffi-
culties involved with getting permission to capture full-content traffic dumps from public 
networks. An important next step is therefore to collect sufficient training data, either as 
packet capture files or in the form of attribute measurement fingerprints, from several 
different sources. Any support that can be provided in this area is warmly welcomed by me! 
 
The current plan for this project is therefore to get in contact with as many interested parties 
as possible, in order to accumulate a database with protocol models with enough natural vari-
ation. These parties can include, but might not be limited to, academic research institutions, 
network infrastructure developers and private individuals. 
 
It is also important to get a good mix of training data from various types of networks, since 
both packet inter-arrival times and packet sizes might vary depending on the network’s band-
width and latency as well as the data link type.  

7.3 Implementation 
I am also planning to implement the SPID algorithm as a part of the NetworkMiner appli-
cation, which is an open source Network Forensic Analysis Tool (NFAT) that I have 
developed. This way NetworkMiner will no longer have to rely on port numbers in order to 
select the correct application layer protocol parser for a network session. 
 
One of my long-term goals with the SPID algorithm is to have the SPID algorithm imple-
mented and used in network infrastructure devices and network security devices. This is also 
the field where I believe the SPID algorithm will be of most benefit. 
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