The SPID Algorithm

Statistical Protocol IDentification

Erik Hjelmvik

Géavle, Sweden. October 2008



The SPID Algorithm — Statistical Protocol IDentification

Abstract

Identifying which application layer protocol is bgi used within a network communication
session is important when assigning Quality of Berpriorities as well as when conducting
network security monitoring. Currently most protbadentification is performed through
signature matching algorithms that rely on stringgegular expressions as signatures. This
report presents a protocol identification schem&edahe Statistical Protocol Identification
(SPID) algorithm, which reliably identifies the digption layer protocol by using statistical
measurements of flow data as well as applicatigerlalata. The SPID algorithm utilises
Kullback-Leibler divergence measurements to companabability vectors created from
observed network traffic to probability vectorskofown protocols.
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1 Introduction

Network intrusion detection systems (NIDS) analgpelication layer data in order to detect
illicit network traffic, such as attacks and setypolicy violations. Different analysis engines
(protocol parsers) need to be used depending onohwdmpplication layer protocol is being

used in a network communication session. Most NkiEluce which application layer

protocol is being used in a session by using steofi well-known ports assigned by the Inter-
national Assigned Number Authority (IANA) (Dregera., 2006). Other solutions that often
use port numbers to deduce the application layaiopol are systems that assign Quality of
Service (QoS) priorities and traffic shaping algams.

Several studies have, however, reported that dBy®»o of the Internet traffic is classifiable
using the IANA port number list (Moore and Papagak, 2005) (Madhukar and
Williamson, 2006). One reason for this is that s@pplications do, for example, try to avoid
detection from network security monitoring solusohy not using standard port numbers
(Dreger et al., 2006) (Haffner et al., 2005). Peepeer (P2P) protocols belong to one such
traffic type that intentionally uses random porimhers for communication (Karagiannis et
al., 2005) in order to evade traffic filters as lat legal implications (John and Tafvelin,
2008).

Backdoors, installed by hackers on compromisecesyst are often disguised by using other
ports than the well-known IANA assigned ports fa@iriet, Rlogin, SSH or whatever protocol
the backdoor is using (Zhang and Paxson, 2000)eTdre also several other applications that
leech on well-known ports of other protocols foeithcommunication (Li and Moore, 2007),
often with the purpose of traversing firewalls (fi&r et al., 2005). Some of the more
commonly leeched-on TCP ports are therefore po@ts(ETTP) and 443 (HTTP over
SSL/TLS).

1.1 SPID Overview

This report presents a scheme designed to perfostogol identification based on statistical
measurements of various protocol attributes. Thecept of protocol identification is also
known as application identification (Haffner et, &005) (Bernaille et al. 2006) (Juniper
Networks), Port Independent Protocol Identificati@ejtlich, 2006), Protocol Discovery
(Cisco, 2006) and Application Recognition (Cisc00?2).

The herein described protocol identification algan, which is developed by Erik Hjelmvik,
is called the Statistical Protocol IDentificatioBRID) algorithm. The SPID algorithm is
designed to reliably identify which protocol is bgiused in a network communication
session. Key requirements for the algorithm are:

Small protocol database size

Low time complexity

Early identification of the protocol in a session
Reliable and accurate protocol identification

PwpNdPE

The motivation for these requirements 1 and 2 ba¢ it shall be possible to run the SPID
algorithm in real-time on an embedded network devivhich has limited memory and
processing capabilities. The motivation for requieat 3 is that it shall be possible to use the
results from the SPID algorithm in a live traffiapturing environment to automatically take
measures in order to, for example, provide qualitgervice (QoS) to an active session, block
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illicit traffic or store related traffic for off-ie analysis Haffner et al. (2005) also point out
the need for enterprises to degrade P2P servicesafe-limiting, service differentiation and
blocking) on their networks in favour of the perfance for business critical applications. |
have therefore required that the protocol musteatifiable, with the SPID algorithm, based
on only the four first application data packetg.(not counting the flow control signalling
packets) in a session. Requirement 4 does not aegdurther motivation than the obvious
“in order to provide a high quality service”.

The SPID algorithm performs protocol identificatibly using statistical fingerprints. The
statistical fingerprints, of a session or knowntpcol, are part of an object called “Protocol
Model”. The application layer protocol in a sessiendentified by comparing its protocol
model to protocol models of known protocols.

Sniffed TCP _ Protocol Protocol Model Protocol

Session Data = e of P Model
Generation Unknown Protocol Comparison

Protocol Models
of
Known Protocols

A

Best Protocol
Match

Figure 1 Protocol Identification Data Flow

The SPID algorithm present a reliable method fentdying protocols based on both flow
and application data. The strong identificationtdea is a result of the innovative protocol
attribute metering functions, the protocol modeish data format and the model comparison
algorithm.

The SPID algorithm does not require any manualticreaf protocol signatures; but it does
require training data that is pre-classified basedorotocol, in order to generate a protocol
model database. The protocol model data formaivalfor the protocol models to be updated
as new training data becomes available, withouinga&ccess to the previously used training
data.

2 Related Software Applications

2.1 L7-filter

L7-filter (I7-filter.sourceforge.net) is an openusoe project which focuses on identifying the
application level (layer 7 in the OSI reference elpghrotocol. It does so by using manually
crafted pattern files, which contain regular exprass (RegEx) for the protocols they are
designed to identify. There are at the time ofiwgitsomewhere over 100 RegEx pattern files
available at the L7-filter project page.

L7-filter is the de-facto open source applicatiaed in order to identify the application layer
protocol without relying on IANA-assigned port nuemb. The L7-filter application does,
however, have some shortcomings such as being poopeoduce false positives. The L7-
filter project’'s wiki page (www.protocolinfo.org)ogs, for example, mention the following
statement regarding the protocol pattern for the p@tocol eDonkey:

! Performing off-line analysis of traffic is usefual for example, network forensic investigations
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“This is a difficult protocol to match with regulaxpressions. The |7-filter pattern will falsely
identify about 1% of random data as eDonkey.”

Patterns that makes extensive use of wildcarddamid operators tend to require a great deal
of processing power, according to the L7-filtertBat Writing HOWTO. Hence, the required
time to compare network data to a protocol patiemot deterministic and might vary a great
deal depending on how the pattern is written.

Another problem with the L7-filter patterns is thie fingerprints have to be manually
created, which means that network traffic and/atgmol specifications need to be studied
and abstracted in order to create a reliable pobtdentification pattern. The task of writing

patterns that minimise the required processing powéen performing pattern matching,

increases the manual labour furthermore.

2.2 FIOp

Michal Zalewski has developed a proof-of-concegliaption, called FIOp, which is designed
to extract interesting information from network\lalata. The input data to the FIOp appli-
cation is flow statistics, such as packet sizes packet inter-arrival times (i.e. without
inspecting application payloads). FIOp can be useadrder to, for example, tell users apart
from automated bots even for encrypted protocols.

The fingerprint database for FIOp does unforturyabaly contain a very limited set of finger-
prints, but there are some independent initiativesreate additional fingerprints for FIOp
(C.S. Lee, 2008). A fair amount of manual laboureguired in order to generate a FIOp
fingerprint, just as for L7-filter.

2.3 PISA

PISA is a yet-to-be-publicly-released open soungelieation, which uses application layer
data (application data entropy) as well as flowistias (packet sizes and packet inter-arrival
times) to identify the application layer protoc@h@amankar and King, 2007). The PISA
application is developed by Rohit Dhamankar and Roig of TippingPoint, and was first
presented at Black Hat USA 2007.

PISA uses a 10-dimential representation of eadjefjprint, where the dimensions are made
up of average values and standard deviations depaizes and response times as well as the
Shannon entropy of the application layer data. Qice feature of PISA is that protocol
fingerprints can be generated automatically diyeitdm pre-classified pcap files.

The PISA implementation uses a rather slim reptesen for the fingerprints, i.e. only
average values and standard deviations, insteadiin§g a more rich representation such as a
probability density function or a probability vect®ISA also does not utilise several inherent
properties of many protocols, such as consistdmlying the same byte values at a fixed
offset in each packet as well as the order ancttitire in which the packets in a session are
exchanged between the client and server. Becauskesé limitations the protocol of an
observed session cannot be reliably identified §ipgiPISA until some hundreds of packets
have been observed. Fairly good protocol deteatand, according to the creators of PISA,
however be performed after just a dozen packetsng large enough training set.
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2.4 Proprietary Implementations

There are several commercial solutions that perfpratocol identification, some examples
are NetScout's Sniffer Application Intelligence (Seout, 2008), Cisco’s NBAR (Cisco,
2007) and Juniper’s Application Identification. Teas unfortunately very little information
available regarding how the protocol identificatisrperformed in these proprietary systems.
A qualified guess is, however, that the implemeotst make use of string matching in a
similar manner as L7-filter.

3 Related Academic Research

3.1 Traffic Classification Research

Traffic classification is the science of automaticassigning a traffic class, such as P2P,
web, email, chat or gaming, to a network sessidre Glassification algorithms do in most
cases make use of flow statistics (Erman, 20079t(Cet al., 2007a) (Auld et al., 2007) (De
Montigny-Leboeuf, 2005) (Bernaille et al. 2006)csuas duration, bytes transferred, packet
inter-arrival time and packet size.

Using flow statistics rather than inspecting fuicget data (including application data) has
several advantages:
* Network flow data can easily be extracted from nmettvork routers
* Handling and manual inspection of network flows sloet intrude on the privacy of
the network users to the same extent as when apiphicdata is handled
* Network flows require a significant lesser amouhidata compared to full content
packet data

The algorithms used for traffic classification amenost cases based on linear approximation
algorithms, such as naive Bayes and Hidden MarkoseNs.

A shortcoming of many traffic classification alghms is that they cannot reliably identify
the traffic type until all, or at least several tisand packets (Erman, 2007), of the traffic from
a network session has been analysed.

Some researchers use connection patterns (Kargiabiai., 2005) (John and Tafvelin, 2008)
in order to tie an IP-port pair to a traffic categorhese methods make use of host behaviours
such as number of connected hosts, if the hostsenace provider or consumer and which
other IP-port pairs the host is connected to. e powerful method since the classification
can be based on several flows rather than a ssegsion or flow. One drawback of using
connection patterns is that the algorithm with tiwié be required to hold an unreasonably
large database of IP-port information. Connectiatigosn classification schemes can also not
be used if a single session is to be analysedpwuiithaving access to additional data about the
hosts’ connection pattern behaviours.

It should also be noted that the classificationhods used for traffic classification are based
on a simplistic model where there are only 4 taffeknt types of traffic classes to choose
from. The task of identifying the actual protocélaonetwork session, on the Internet or on a
local area network, involves choosing the correotqrol out of a set of several hundreds of
protocols.
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3.2 Protocol Identification Research

The field of protocol identification seems to haeseived less attention, in the academic
research community, compared to the field of tcadfassification. This is surprising since the
problem of traffic classification can effectively beduced to the problem of protocol identi-
fication; hence a protocol identification algorittuan be used to provide traffic classification,
but not vice versa. Protocol identification doesoahave a larger practical value for real-
world applications compared to the more abstrasit ¢td performing traffic classification.

The research performed on protocol identificatidtero rely on application data matching,

either by using manually created payload byte-patsggnatures (Dreger et al., 2006) or by
automatically creating application layer byte-lesgnatures (Haffner et al. 2005) (Ma et al.
2006). Others (Bernaille et al. 2006) (Crotti et2007b) use flow statistics, such as packet-
size and inter-arrival time, to detect the protacsed in a session.

4 SPID Algorithm Details

The SPID algorithm performs protocol identificatioy comparing fingerprints of the investi-
gated session to pre-calculated fingerprints ofwkmgrotocols. An open source proof-of-
concept implementation of the SPID algorithm wid made available on SourceForge.net.
The proof-of-concept application only allows forofwcol identification of protocols which
use the TCP protocol as transport layer. The podaoncept application does therefore make
use of the 5-tupfeto identify the bi-directional flowy which constitutes the TCP session. The
SPID algorithm can, however, be used to identifgt@eols in any communication scheme
where there is a notion of a session, i.e. a ladetional flow. This implies that the SPID algo-
rithm can (with various success) be used alsaléntify protocols that are transported or
tunnelled within protocols such as UDP, HTTP, N&@B| DCE RPC, ISO 8073 or even SSL.

4.1 Fingerprint Data Format

All fingerprints are represented in the form of lpability distributions. This means that the
data for each fingerprint is represented by twayar(vectors) of discrete bins; one array of
counter bins and one array of probability bins. Sehewo arrays are in this report referred to
as being a counter vector and a probability vector.

The values of the counter vectors are non-negatiteger values, where the value at each
index represents the number of times the obsenafjanalysed packets) have triggered that
particular index.

The probability vectors are a normalised versionhef counter vectors, where the values of
the probability vectors are values between 0.0 &fid The sum of all values in every
probability vector is always equal to 1.0.

Index 0] ...[ 79] 80| 81] 8] 83| 84] 85]..[ 255
Counter vector | 1263 | ... | 715| 935| 296 | 919 | 1056 | 1845 | 643 | ... | 1434
Probability vect. [ 0.006 | ... [ 0.003 [ 0.004 | 0.001 | 0.004 | 0.005 | 0.009 | 0.003 | ... [ 0.007

Figure 2 Fingerprint data example displaying byte frequency for HTTP

2 A 5-tuple is a set of: source IP, source portfidagon IP, destination port and transport protoco
% A bi-directional flow consists of the data senbith directions for a specific 5-tuple
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The data format used in the examples of this reyses vectors of length 256 for the counter
and probability vectors; an implementation of theI[3 algorithm can, however, use any
length for these vectors.

4.2 Protocol Attribute Meters

The SPID algorithm makes use of several differentqeol attribute metering techniques in

order to convert packet-level data into the presipdescribed fingerprint data format. These
“attribute meters” are designed to make use of agtilow data — such as packet size distri-
bution and packet direction distribution — as wasl application level data — such as byte
frequencies, reoccurring byte-sequences and offiset®mmon byte-values.

ProtocolModel

TrainingSessionCount : int

ObservationCount : ulong

AddObservation(in packetData, in packetTimestamp, in packetDirection)
GetAverageKullbackLeiblerDivergenceFrom(in protocolModel) : double
MergeWith(in otherModel) : ProtocolModel

1
O”*

AttributeFingerprintHandler

AttributeMeter : |AttributeMeter

AttributeFingerprint : Fingerprint

AddObservation(in packetData, in packetTimestamp, in packetDirection, in packetOrderNumberinSession)
GetKullbackLeiblerDivergenceFrom(in protocolAttributeModel) : double

MergeWith(in otherFingerprint) : AttributeFingerprintHandler

O"*

1

IAttributeMeter

AttributeName : string
1 GetMeasurements(in packetData, in packetTimestamp, in packetDirection, in packetOrderNumberinSession)

Fingerprint
ProbabilityDistributionVector
IncrementFingerprintCounterAtindex(in index)
MergeWith(in otherFingerprint) : Fingerprint

Figure 3 SPID algorithm UML class diagram

Every attribute meter holds a function caltedmeasurements , which takes the packet appli-
cation data, packet timestamp (in order to caleufsicket inter-arrival time), packet order
number in session and packet direction (clientetwey or vice versa) as input and returns a
set of integer values. The returned integer vahegsesent the indices, in the associated
fingerprint counter vector, that should be incretedn

int[] GetMeasurements(byte[] packetData, DateTime p acketTimestamp,
PacketDirection packetDirection, int packetOrderNum berInSession){...}

A simple attribute meter can for example havgeeveasurements function that returns a set
of integers representing the individual byte valueghe application layer of a packet. A
simple HTTP GET request such aset / HTTP/1.1 "% which is fed to such a metering

* The double carriage return line feed requirecbtenfa valid HTTP request are omitted to simplifg #xample
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function, would for example generate the follownegurn values71, 69, 84, 32, 47, 32, 72, 84,
84, 80, 47, 49, 46 and49°.

Utilising information about byte positions (offseta the application layer data can generate
very good classification attributes for identifyipgotocols. One such offset-and-value-aware
attribute metering solution is to have themeasurements function return a set of integers
that represent the offsets and values (1 or Opdividual bits in the application layer data.
The following example code shows how such an atteibmetering function, which looks at
the first 128 bits (16 bytes) of the applicatioteda@ould be implemented:

int[] GetMeasurements(byte[] packetData, DateTime p acketTimestamp,
PacketDirection packetDirection, int packetOrderNum berinSession){
BitArray applicationDataBits=new BitArray(packetD ata);

List<int> measurements=new List<int>();
for(int i=0; i<128; i++){
if(applicationDataBits[i]==false)
measurements.Add(2*i);
else
measurements.Add(2*i+1);
}

return measurements.ToArray();

}

The example code provided above is somewhat sindlathe “Discrete byte encoding”
described by Haffner et al. in “ACAS: Automated Gwnction of Application Signatures”,
with the exception of bytes being replaced by &itd vice versa.

Another simple attribute measurement method isaie@ thesetMeasurements  function return
a value based on the packet size, i.e. small paikes will generate low values and large
packet sizes will generate high values.

Attributes metering functions can also combine saveroperties into a composite attribute
meters. Examples of composite attributes meters are

» packet direction + packet order number in sessipacket size

» packet direction + packet order number in sessipacket inter-arrival time

» packet direction + byte-value frequency

» packet direction + packet order number in sessibgte offset-value data

» packet order number in session + byte offset-vdata

» packet order number in session + byte-value frequerpacket size

More than 20 other innovative, and sometimes ratienplex, attribute metering functions
will be made available as part of the open sounmfpof-concept code for the SPID
algorithm.

4.3 Generating Protocol Models for Observed Sessions

The defined attribute measurement functions cansed in order to generate fingerprints for
individual network packets. The SPID algorithm maever designed to identify protocols
used in network sessions, which is why a set afbate fingerprints (one fingerprint per
attribute meter) shall be assigned to each sesatbar than to every packet. Every fingerprint
and its related attribute meter are paired togeithean object called “attribute fingerprint
handler”. The attribute fingerprint handler doesoaprovide several important support func-

® ASCII representations: 71=0x47="G’, 69=0x45="E48)x54="T" etc.
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tions needed to, for example, compare fingerpridiach attribute fingerprint handler is
associated with a network session. The set ofbattifingerprint handlers assigned to the
same session are contained within an object cgiedocol model”.

The protocol model object is created upon the éstabent of a session (after the three-way
handshake in the case of a TCP session). The finges belonging to a protocol model are
empty upon creation, which means that the fingetgpricounter vectors all have the value
zero.

Every packet with payload (application layer dais)called an observation. Each such
received observation shall be fed to the curressisa’s protocol model object by using the
Addobservation  function. Upon receiving an observation the protomodel calls the
Addobservation ~ function of each attribute fingerprint handler.cBaattribute fingerprint
handlers do in turn call theetmeasurements function of their associated attribute meter,
which returns a set of vector indices, and themeiment the fingerprint counters at these
indices. Hence, when going back to the previousmta with the HTTP GET command and
the simple packet byte attribute meter, the cosnieruld increment from all zeroes to:

» 3 for the counter at index 84 (since there areetfirg in “‘GET/ HTTP/ 1.1 )
» 2 for counters at index 32, 47 and 49 (spacend 4’)

» 1 for counters at index 71, 69, 72, 80 and 46

» O for all other counters

All other attribute fingerprint handlers, belonging the same protocol model, will also
increase their counters based on the sets of mdit are returned from their respective
attribute meterssetMeasurements  functions.

Subsequent packets in the same session will trifgeeattribute fingerprint handlers of the
session’s protocol model to get more attribute mesaments, which will cause the finger-
prints’ counter vector values to increment evenandr good approach is, however, to limit
the attribute metering functions to only returrribttte measurements for the first number of
packets in a session. Doing so will decrease the tomplexity of the algorithm as well as
allow for better precision when the protocol neexdbe identified early in a session.

4.4 Generating Protocol Models for Known Protocols

Protocol models for known protocols are generatemnfreal network traffic, preferably
stored in the “pcap” packet capture dump format pbap files do, however, need to be pre-
classified, either manually or automatically, irder to be used as training data for the SPID
algorithm.

The pre-classified training data is converted totgeol model objects (one per protocol) by
generating protocol models for each session andingethe fingerprints of the same protocol
and attribute type. The protocol model merger as, évery protocol, performed by adding
together the counter vector values of fingerpraitthe same attribute measurement type. The
addition shall be performed pair wise for each @eéhdex as shown in the following
example code:

for(int i=0; i<FINGERPRINT_LENGTH; i++)
mergedCounterData[i] = counterDataA[i] + counterD ataBi];
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The more sessions that are merged together forgraticol, the more reliable the fingerprint

will be. A rule of thumb for how many sessions aeeded, to reliably fingerprint a protocol,

is to have as many training sessions as the larfgtiie vectors in a fingerprint (i.e. 256 for

the examples provided in this report). Early evaunes of the SPID algorithm have, however,
showed that reliable results can be achieved wstliea training sessions as 10% of the
fingerprint vector length.

4.5 Comparing Fingerprints

One of the key components of the SPID algorithnhagv the fingerprints of an observed

session are compared to fingerprints of know pratocThe previously described probability

vectors are used as input data for the comparigoctibn. The counter vector values of the
observed session are first used in order to upiti@gorobability vectors, in case there has
been a change of the counter vector values simcprévious fingerprint comparison.

A probability vector ..., for a specific attribute, of an observed sessotompared to a
probability VeCtor @, .i..«w.) Of @ protocol model by using the Kullback-Leibtivergence

(also known as theslative entropy) measurement.

I{L—DiVCrgCnCC(P attribute | | aQattribute,promco]) = Z/( thtribute(z> * log( P az‘frz'/mie(@ / oQaffrz'/mie,pmmm/(Z) ) )

The result of the KL divergence measure is a vahat represents how much extra infor-
mation, per attribute measurement, that is needletscribe the values in(the observation
probability vector) by using a code (such as a iafi coding) that is optimised fgr (the
model probability vector) instead of using a cogéroised forP itself.

The best protocol model match for an observed whtien P is the model which yields the
smallest KL divergence for the observed sessiam, the protocol model which most
effectively (in terms of entropy) can be used toagle data with the distribution &f

An alternative to using KL divergence is to use thess entropy of? and Q0. The cross
entropy will always yield the same best protocotahaas the KL divergence since the cross
entropy forP andQ is equal to the Shannon entropyPgflus KL divergence of and(Q.

H(P,Q0) = H(P) + KL-Divergence (P| | Q)

One drawback of the cross entropy is that highegytisessions (in terms of both flow- and
application data behaviour) will generate higherserentropies than the cross entropies of
low-entropy sessions. It can therefore be hardeterdhine if the best protocol match is good
enough or if it is just a false positive. This piegh is eliminated when using KL divergence
since each divergence measurement is normalisédtiagt observed session’s own entropy.
Hence, a global threshold value can be assigned wisang KL divergence so that only
protocols with divergences below the thresholdlmaaccepted as probable protocol matches.

4.6 Comparing Protocol Models

Protocol models of observed sessions are companeebtocol models of known protocols by
calculating the Kullback-Leibler divergences of tm@dels’ attribute fingerprints. The best
protocol match is the one with the smallest avetagléback-Leibler divergence of the under-
lying attribute fingerprints. A good approach isassign a threshold value, where Kullback-
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Leibler divergence average values under the thidshie considered matches and larger
divergences are not.

5 Proof-of-Concept Application

The proof-of-concept application for the SPID alton is written in C# using the Microsoft
NET framework. The application is designed to lbad types of files; protocol model data-
base files (in XML format) and single TCP-sessiaptare files (in pcap format). The
application automatically attempts to identify thpplication layer protocol when a TCP-
session capture file is loaded.

The proof-of-concept application makes use of 2ffedint attribute meters in order to
generate fingerprints. Many of these attribute msetge somewhat overlapping, so there is
some potential to being able to reduce the numblerattribute meters in future
implementations.

5.1 Application Functionalities

A protocol model database XML-file can be loadei ithe application by selecting “Import

Protocol Model Database” from the File menu. Afteing so a table of protocols will appear
in the list view on the right of the user interfaddre protocol models list also displays the
number of sessions and observations that have umsth in form of pre-classified training

data, to generate the fingerprints of each protocmiel.

Upon loading a pcap file with a TCP ses§itte application starts creating a protocol model
based on the first 100 packets in the session.pfbi@col model’s attribute fingerprints are
then compared to those of the known protocols enddtabase. The average Kullback-Leibler
divergence, between the observed session’s fing&pand those of the known protocol
models, is displayed in the divergence column ef ‘tBession Protocol Identification” list
view at the left. The protocol that best matches dbserved session will automatically be
selected in the drop-down list below the sessiatgeol identification list view as displayed
in the screenshot below:

® The loaded pcap should contain only one TCP sespi@ferably created through the “Follow TCP sméa
functionality in Wireshark and saved with the “Desged” packet range.
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Figure 4 SPID Algorithm proof-of-concept application attempting to identify a TL S session

The observed session’s protocol model can be appeta an existing protocol model by
selecting the correct protocol in the drop-down éed pressing the “Add” button. A new
protocol model can also be added to the protocalehdatabase by manually assigning a new
protocol name to the observed session. The apiplicain also be used in order to generate a
new protocol model database from scratch by addmg protocols to an empty protocol
model database.

Different protocol model databases can also be egeigto a combined protocol model
database simply by importing several protocol modigiabases (one at a time) into the
application. The merged database can then be davedisk by choosing “Save Protocol
Model Database” from the file menu.

Metadata about protocols, such as their default pambers, can be added to the protocol
model database. The port number information is mader any circumstances, used in order
to perform the protocol identification. The purpasieadding metadata about default port
numbers is merely in order to allow other applmasi to use the database to, for example,
alert upon detection of protocols leeching on Wwabbwn ports of other protocols (such as P2P
protocols running on TCP 80 or 443).

5.2 Protocol Model Database

The SPID proof-of-concept application will be pshied along with a protocol model
database, which can be used to identify a limittdog protocols. The included database will
only contain protocol models generated out of miplavailable pcap files from sources such
as Wireshark Sample Captures, OpenPacket.org amdd dab Kit.

11
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Users of the proof-of-concept application can, haveextend the included protocol model
database with more traffic and more training databiider to support more protocols and
attain more reliable protocol identifications.

5.3 Under the Hood

The Kullback-Leibler divergence function calledtkullbackLeiblerDivergenceFrom() in

the AttributeFingerprintHandler class holds a sralifor the original KL-function, in order

to introduce some evenly distributed noise andvtmdadivision by zero. This fix ensures that
the KL-divergence function treats all probabilityctors, in the protocol model database, as if
their corresponding counter vectors were increnmtebieone at all indices. The probability
vectors of observed sessions are treated as if¢banter vector values were incremented by
1/VectorLength (i.e. 1/256).

The pcap file parser and the protocol dissectarsafger 2 to layer 4 are based on code from
the open source application NetworkMiner.

A more detailed description of the inner workingshe “SPID Algorithm Proof-of-Concept”
can be attained by looking at the source code, wisifreely available from SourceForge at:
http://sourceforge.net/projects/spid/

The SourceForge page for the SPID algorithm alddsha binary executable application,
built for Microsoft Windows. The Microsoft .NET fnaework 2.0 does, however, need to be
installed on the computer in order to properly ithhe SPID algorithm proof-of-concept

application.

6 Evaluation

This report contains a limited amount of evaluasarce there is not yet enough training and
validation data available to assess the robusiofege provided protocol identification func-
tionality.

6.1 Protocol Model Database Memory Complexity

The data rich SPID fingerprint format yields distiy larger protocol signatures compared to,
for example, regular expression based signatutes size of a SPID protocol model database
depends on three variables; number of protoddlsnimber of used attribute mete¢s!) and

the length of the vectordJ. The memory complexity for the database is the@>+.4*L).
Both .4 andL are, however, considered being constants (witbrmeecended values of1=8,
1.=256), so the memory complexity is in faci(P). There is thereby a linear relationship
between the memory complexity and the number ofopais in the database. Hence, an
application that only needs a small number of mroi® (in order to for example identify peer-
to-peer protocols) can in a real-case scenario hadlatabase that requires less than 100kB
memory. A more comprehensive database of 100 prtstdevhich is about the number of
protocol signatures available in Cisco’s Networks8&a Application Recognition as well as
the L7-filter application) would require a couplé megabytes worth of memory. Using a
low-entropy representation, such as XML, yieldsomerhead of more than twice the data
size, so an XML-based protocol database file fdy ffibtocols would require approximately
10MB of storage.

" There will be one fingerprint for every possibletocol-attribute meter combination

12
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Requiring 10MB of storage space is rather muchgsicianing the limited amount of space

available on the flash memories used by many endzbeddvices, but it is within the range of

what can be considered acceptable. The possilmfitgompressing the database does, of
course, also exist. A 10MB protocol database ixXkth format can be expected to consume

no more than 1MB of storage space after being cessed.

6.2 Operational Time and Memory Complexity

Let M be the total session fingerprints in memory andhe average number of analysed
packets with payload (a.k.a. observations) in aisesThe number of protocol models in the
database is here considered to be constant, justlhss the number of protocol attributes
used and the fingerprints’ vector lengths. The paskze is also assumed to be constant, since
the maximum size of transmitted packets (MTU) suad 1500 bytes on most netwdtks

Capturing packets and creating protocol model fipgets for each session generates a
memory footprint ofO(M), where M is the number of sessions needed in memory. The
session fingerprints can, depending on the purmdsthe application, be released from
memory as soon as the protocol has been succgssieritified.

The time complexity for capturing packets and updga session model’s fingerprints will be
O(logM), to find the correct session model, for each rexxepacket with payload. This yields
a time complexity per session Of N logh\l).

The time complexity for identifying the protocolagsin a session by using a protocol finger-
print database i®(P), whereP is the number of protocols in the database. Tiakly a total
time complexity ofO(IN * (P + logM) ) per session, if an effort to identify the usedtpcol is
performed every time a packet with payload is nesebi

7 Future Work

Even though the SPID algorithm looks very promisingas yet to be benchmarked against
other similar implementations to assess its paénti

7.1 Algorithm Tuning

The SPID algorithm needs to be tuned, in ordedjosh parameters such as:
» Vector lengths
» Kullback-Leibler divergence threshold value
* Number of attribute meters used

One other very important tuning aspect is to chdbesebest combination of attribute meters,
which provides the most robust protocol identifioat service. The best combination of
attribute metering functions may vary dependingtlo@ requirements of a specific appli-
cation; early identification might for example baopitised to actively block illicit traffic,
while this functionality is not very important whegwerforming post-event analysis. My
recommendation is, however, that all implementatishould use the same combination of
attribute meters. Doing so will make it easy torshattribute fingerprints for known protocols
with others in the spirit of the open source comityurh am therefore planning to do evalu-
ations to find a good combination of attribute m&tevhich jointly can be used to reliably
identify most protocols without requiring an immenzotocol model database. | am hoping

8 Ethernet has an MTU of 1500, IEEE 802.3 has 14@PIBEE 802.11 uses 2272
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to be able to identify a set of around eight strang orthogonal attribute meters to replace
the current set of 27 attribute meters.

7.2 Assembling Training Data

One of the keys to performing robust protocol ideation is to have a good and accurate
database of protocol fingerprints. | have unfortatyaonly a very limited set of training data,
due to the lack of publicly available full-contgracket capture files and because of the diffi-
culties involved with getting permission to captdudi-content traffic dumps from public
networks. An important next step is therefore tdlect sufficient training data, either as
packet capture files or in the form of attribute asgrement fingerprints, from several
different sources. Any support that can be proviaettiis area is warmly welcomed by me!

The current plan for this project is therefore & mp contact with as many interested parties
as possible, in order to accumulate a databasepnotiocol models with enough natural vari-

ation. These parties can include, but might notirnéed to, academic research institutions,

network infrastructure developers and private irthlials.

It is also important to get a good mix of trainidgta from various types of networks, since
both packet inter-arrival times and packet sizeghtnvary depending on the network’s band-
width and latency as well as the data link type.

7.3 Implementation

| am also planning to implement the SPID algorithsna part of the NetworkMiner appli-
cation, which is an open source Network Forensialysis Tool (NFAT) that | have

developed. This way NetworkMiner will no longer leatw rely on port numbers in order to
select the correct application layer protocol pafgea network session.

One of my long-term goals with the SPID algorithentdo have the SPID algorithm imple-

mented and used in network infrastructure devicesreetwork security devices. This is also
the field where | believe the SPID algorithm wid bf most benefit.
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